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Sparse maximal update parameterization: A 
holistic approach to sparse training dynamics
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TL;DR: We introduce the 
sparse maximal update 
parameterization (SµPar) 
which ensures stable optimal 
HPs for any width or sparsity 
level. This dramatically 
reduces sparse HP tuning 
costs, allowing SµPar to 
achieve superior losses.
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• When training sparse models, it is standard practice to re-use the dense hyperparameters (HPs) 
• Left: Optimal HPs systematically vary with sparsity level
• Conducting a robust sparsity study would require retuning HPs for each sparsity level
• Right: Without stable optimal HPs across sparsity levels, it is prohibitive to robustly study large-

scale sparse training

Motivation
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• Left: We propose Sparse Maximal Update Parameterization (SμPar), which enables the 
same HP values to be optimal as we vary both sparsity level and model width

• Right: SμPar enables more robust sparsity research
• In prior research that re-used dense HPs, sparse models are unfairly disadvantaged and 

these studies merit re-examination

SuPar enables more robust sparse research
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• Unlike SP and μP [1], SμPar enables 
optimal HP transfer for any width or 
sparsity
• Top: SμPar enables stable 𝜂∗ for any 

sparsity.
• Middle: SμPar enables stable 𝜎𝑊∗ for 

any sparsity.
• Bottom: SμPar enables stable 𝜂∗ for 

any width and sparsity.
• Our dense-tuned HPs perfectly transfer 

to SμPar models (“μTransferred” vertical 
line)

Static Sparsity 
Hyperparameter 
Transfer
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• Large networks trained with SμPar improve over SP and μP due to 
improved tuning

• Top: Apply static sparsity to 610M parameter LLM trained on 12.2B 
tokens. SμPar models improve over SP and μP due to improved 
tuning

• Bottom: Iso-Parameter wide-sparse scale 111M parameter LLM 
trained on 1B tokens. SuPar enables wide-sparse models to match 
dense loss at high sparsity levels, unlike SP and muP

Sparse LLM Pretraining
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How SuPar works
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• Setup: For several sparsity levels, train a model for 10 steps and record activation L1 norm
• All the points at each density value comprise a single training run 
• Each line has points from multiple models

• Left & Middle: For both SP and μP, sparsity causes vanishing activations and gradients
• Right: For SuPar, sparsity has little effect on activation scales and there is no vanishing.

SμPar stabilizes training dynamics
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Training step
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https://github.com/EleutherAI/nanoGPT-mup/tree/supar

• SμPar ensures the typical element size of 𝑌, ∇𝑋𝐿, Δ𝑌 is Θ 1 with respect to change in width 𝑚𝑑
and change in density 𝒎𝝆, satisfying the FLD

• SμPar extends μP [1] for sparsity by applying corrections to hidden LR and initialization 
variances.

• Code: https://github.com/EleutherAI/nanoGPT-mup/tree/supar

Sparse Maximal Update Parameterization (SμPar)

https://github.com/EleutherAI/nanoGPT-mup/tree/supar
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• None of SP, μP, or SμPar achieve stable 
𝜂∗ across sparsity levels for RigL [2] (Top) 
or GMP [3] (Bottom)

• For SμPar, higher sparsity means lower 𝜂∗
because SμPar is “overcorrecting”. 

• Problem: Dynamic sparse mask updates 
shift distribution of unmasked/non-zero 
weights to be non-Gaussian

• Future work: Generalize SμPar for 
dynamic sparsity

Dynamic sparsity hyperparameter transfer
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