Amortized Eigendecomposition for Neural Networks

Tianbo Li, Zekun Shi, Jiaxi Zhao, Min Lin

SEA AI Lab National University of Singapore

An Optimization Problem Involving Eigendecomposition

$$\min_{\boldsymbol{\theta}} f(h_{\boldsymbol{\theta}}(\boldsymbol{X}), \boldsymbol{V}, \boldsymbol{\Lambda})$$

s.t. $\boldsymbol{V}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{V} = \boldsymbol{A}$ where A is constructed from h(x)

Nuclear Norm Regularization

Eigendecomposition is Slow

In both PyTorch and JAX, performing Singular Value Decomposition and eigendecomposition can be 10x to 100x slower than matrix multiplication for a 10000 x 10000 matrix.

The idea

Eigendecomposition itself is an optimization process;

however, it does not need to fully converge at each step;

it only needs to reach the desired outcome in the end.

Amortized Eigendecomposition

Algorithm 1 The conventional eigendecomposition in a neural network outlined in Eq. (2)

Input: Dataset X, encoder h_{θ} , task f_{ω} ;

- 1: Initialize model parameter $\boldsymbol{\theta}$ and $\boldsymbol{\omega}$;
- 2: while not converged do
- 3: compute \boldsymbol{A} from $h_{\boldsymbol{\theta}}(\boldsymbol{X})$;
- 4: $V, \Lambda = eigh(A);$
- 5: compute $f_{\boldsymbol{\omega}}(h_{\boldsymbol{\theta}}(\boldsymbol{X}), \boldsymbol{V}, \boldsymbol{\Lambda});$
- 6: update θ , ω by gradient descent;
- 7: end while

Algorithm 2 The amortized eigendecomposition technique outlined in Eq. (12)

Input: Dataset X, encoder h_{θ} , task f_{ω} , and η ;

- 1: Initialize model parameter θ , ω and W;
- 2: while not converged do
- 3: compute \boldsymbol{A} from $h_{\boldsymbol{\theta}}(\boldsymbol{X})$;
- 4: $U = QR(W), \Sigma = diag(U^{T}AU);$
- 5: compute $f_{\omega}(h_{\theta}(X), U, \Sigma) + \eta g(A, U);$
- 6: update θ , ω , **W** by gradient descent;

7: end while

Task	Dimension	Backbone time (s/iter)	Backbone+ eigh/svd	Backbone+ our method	Speed-up
		t_0	time (s/iter) t_1	time (s/iter) t_2	$\frac{t_1-t_0}{t_2-t_0}$
Nuclear norm regularization	$128 imes 128 \\ 256 imes 256 \\ 512 imes 512$	5.275E-2 5.600E-2 7.186E-2	8.323E-2 1.209E-1 2.616E-1	6.025E-2 6.080E-2 7.366E-2	$\begin{array}{c} 4.06 imes \ 13.5 imes \ 105.4 imes \end{array}$
Latent-space PCA	$256 \times 2 \\ 512 \times 2 \\ 1028 \times 2$	4.178E-3 6.792E-3 1.434E-2	1.446E-2 2.918E-2 7.018E-2	1.117E-2 2.224E-2 5.467E-2	$1.47 \times$ $1.45 \times$ $1.39 \times$
Low-rank GCN	$2708 imes 16 \\ 3312 imes 16 \\ 19717 imes 16$	1.021E-3 1.367E-3 1.931E-2	1.769E-2 2.825E-2 4.941E+0	1.732E-3 2.498E-3 2.731E-2	$23.4 \times$ $23.7 \times$ $615.2 \times$

Table 1: Evaluation of execution times per iteration on three tasks.