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Cow/camel classification task

Problem
• A majority of camel images feature desert backgrounds, 

while a majority of cow images feature pasture 
backgrounds.

• ERM-trained models might learn to recognize animals 
based on their backgrounds—desert for camels and pasture 
for cows—rather than on their distinctive features.

• This reliance causes misclassifications on certain groups.



Motivation
• Debiasing methods with bias labels: Demonstrate 

remarkable success. However, bias labels (e.g., background) 
are expensive. 

• Debiasing methods without bias labels: Employ a two-stage 
strategy: (1) identifying bias-conflicting samples, and (2) 
training the debiased model by enhancing performance for 
these identified bias-conflicting samples.
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Cow/camel classification task

Q: What is the optimal extent of enhancing performance on the bias-conflicting samples?
A: A debiased model should exhibit consistent performance across both bias-
aligned and bias-conflicting samples.



Method
• The training objective for mitigating spurious correlations
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• By minimizing the maximum loss across bias-aligned and bias-conflicting groups, we aim to 
encourage the model to perform consistently on both.

• However, this objective requires information about the presence of spurious correlations.
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Assumption: The neural network satisfies that &ℒ%$ < &ℒ%% .
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• A weighted loss minimization
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Assumption: The neural network satisfies that &ℒ%$ < &ℒ%% .



Method
• However, the sampling probability 𝑟(𝑥, 𝑦, 𝑏) still requires explicit bias information.

• To eliminate the need for bias labels, we use the characteristics of the biased model.

• We employ the disagreement between the label 𝑦 and the biased model’s prediction 𝑦%012
as a proxy for the bias-conflicting group 𝑏-.
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• The final objective
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Method
• Algorithm

1. Train the biased model

2. Calculate the sampling probability �̂�(𝑥, 𝑦)

3. Initialize the debiased model with the biased model to satisfy assumption

4. Train the debiased model



Experiments
• Synthetic datasets

• Real-world datasets
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