

RLE: A Unified Perspective of Data Augmentation for Cross-Spectral Re-identification

Lei Tan¹, Yukang Zhang¹, Keke Han¹, Pingyang Dai¹(⊠), Yongjian Wu², Rongrong Ji

¹Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, Xiamen University, China.
²Tencent Youtu Lab, China.

Code: https://github.com/stone96123/RLE

Observation

• Under the same illumination, the cross-spectral transformation could be described as a linear transformation in a material similar surface. Still, in the whole image level, the transformation is nonlinear due to the diversity of materials.

Observation

• Data augmentation for cross-spectral re-identification is formed to achieve non-linear transformations with different distinct local linear factors, thus encouraging the network to be robust to such a transformation.

Contributions

- As an effort to model the transformation behind the modality discrepancy in the cross-spectral Re-ID task, we discover that the cross-spectral modality discrepancy mainly comes from different local linear transformations caused by the diversity of materials. Based on this observation, we further categorize the cross-spectral data augmentation strategies into moderate and radical transformations under a unified perspective.
- By extending the observation, we propose a Random Linear Enhancement (RLE) strategy, which includes Moderate Random Linear Enhancement (MRLE) and Radical Random Linear Enhancement (RRLE). The RLE effectively takes advantage of the aforementioned unified perspective and embeds it in a controllable linear transformation.
- Extensive experiments on cross-spectral re-identification datasets demonstrate the effectiveness and superior ability of the proposed RLE, which can **boost performance under various scenarios**.

Random Linear Enhancement

Overview

(a) Definite linear transformation on Definite image patch.

(b) Random linear transformation on Definite image patch.

(c) Random linear transformation on Random image patch.

Moderate RLE

Moderate Random Linear Enhancement is designed to provide diverse image transformations that satisfy the original linear correlations under constrained conditions

Moderate Transformation:

$$I_{mt} = \lambda_r I_r + \lambda_g I_g + \lambda_b I_b,$$

s.t. $\lambda_r + \lambda_g + \lambda_b = 1,$

Moderate RLE:

$$\begin{split} I_{mt} &= \lambda_r I_r + \lambda_g I_g + \lambda_b I_b, \\ with \quad \lambda_r, \lambda_g, \lambda_b \sim Beta(\beta_m, \beta_m), \\ s.t. \quad \lambda_r + \lambda_g + \lambda_b = 1. \end{split}$$

Random Linear Enhancement

Overview

(a) Definite linear transformation on Definite image patch. (b) Random linear transformation on Definite image patch.

(c) Random linear transformation on Random image patch.

Radical RLE

Radical Random Linear Enhancement seeks to generate local linear transformations directly without relying on external information

Radical RLE:

$$I_{mt} = \lambda_r I_r + \lambda_g I_g + \lambda_b I_b,$$

with $\lambda_r, \lambda_g, \lambda_b \sim Beta(\beta_m, \beta_m),$
s.t. $\lambda_r + \lambda_g + \lambda_b = 1.$

Random Linear Enhancement

Overview

(a) Definite linear transformation on Definite image patch. (b) Random linear transformation on Definite image patch.

(c) Random linear transformation on Random image patch.

Radical RLE

Radical Random Linear Enhancement seeks to generate local linear transformations directly without relying on external information

Radical RLE:

$$I_{mt} = \lambda_r I_r + \lambda_g I_g + \lambda_b I_b,$$

with $\lambda_r, \lambda_g, \lambda_b \sim Beta(\beta_m, \beta_m),$
s.t. $\lambda_r + \lambda_g + \lambda_b = 1.$

Random Linear Enhancement

Overview

(a) Definite linear transformation on Definite image patch. (b) Random linear transformation on Definite image patch.

(c) Random linear transformation on Random image patch.

Radical RLE

Radical Random Linear Enhancement seeks to generate local linear transformations directly without relying on external information

Radical RLE:

$$I_{mt} = \lambda_r I_r + \lambda_g I_g + \lambda_b I_b,$$

with $\lambda_r, \lambda_g, \lambda_b \sim Beta(\beta_m, \beta_m),$
s.t. $\lambda_r + \lambda_g + \lambda_b = 1.$

Experiments

Table 1: Ablation study of different data augmentation strategies on the cross-spectral re-identification task. 'Gray' denotes the grayscale transformation, 'RC' refers to the random channel selection. 'MRLE' indicates the moderate random linear enhancement. 'RE' refers to the random erasing, and 'RRLE' means the radical random linear enhancement.

Setting			All	Search					Indoo	r Search	ı	
Setting	R-1	R-5	R-10	R-20	mAP	mINP	R-1	R-5	R-10	R-20	mAP	mINP
Moderate Transformation												
Baseline	64.5	88.1	94.2	98.1	62.9	50.4	70.0	91.7	96.6	99.1	75.1	71.1
Baseline+Gray	66.7	89.4	95.2	98.7	64.2	50.8	72.0	93.9	97.8	99.6	77.1	73.0
Baseline+RC	68.3	90.6	95.6	98.6	65.3	51.9	72.7	93.9	97.6	99.7	77.7	73.7
Baseline+RC+Gray	68.6	90.7	96.0	98.8	64.9	52.3	74.3	94.1	98.1	99.6	78.8	75.1
Baseline+MRLE	70.2	91.6	96.5	99.0	67.0	53.5	75.5	95.2	98.2	99.7	79. 7	75.9
Radical Transformat	ion											
Baseline+RE	71.0	91.4	96.3	99.1	69.5	57.4	78.5	95.8	98.7	99.8	82.1	78.4
Baseline+RRLE	72.0	92.4	97.2	99.4	69.1	56.3	77.0	96.4	99.1	99.9	81.4	77.7
Baseline+RE+RRLE	74.2	93.0	97.4	99.5	71.8	60.4	81.7	96.7	99.1	99.9	84.5	81.2
Mixed Transformation												
Baseline+CAJ [11]	73.5	92.9	97.4	99.4	69.4	55.4	80.7	96.1	98.6	99.8	83.5	79.8
Baseline+RLE+RE	75.4	93.5	97. 7	99.6	72.4	60.9	84.7	97.9	99.3	99.9	87.0	83.7

(a) Performance under different

 β_m . Compared to the uniform distribution, a U-shaped beta distribution works better in MRLE.

β_m	R-1	mAP	mINP
1.0	67.9	65.3	52.2
0.5	67.8	65.1	51.8
0.4	68.3	65.6	52.3
0.3	70.2	67.0	53.5
0.2	67.9	66.0	52.6

(b) **Performance under different** β_r . Compared to the uniform distribution, a U-shaped beta distribution works better in MRLE.

β_r	R-1	mAP	mINP	1
0.5	72.5	70.7	59.3	
0.4	74.2	71.8	60.4	(
0.3	73.2	71.3	60.2	(
0.2	73.7	71.7	60.2	(

(c) Performance under different t_{min} . Using too small t_{min} will introduce excessive noise and lead to performance degradation.

t_{min}	R-1	mAP	mINP
0.3	72.9	70.9	58.2
0.2	73.8	71.3	59.0
0.1	74.2	71.8	60.4
0.01	73.8	71.7	59.8
0.001	73.6	71.3	59.5

Table 4: Applicability of our opposed RLE to other methods on the SYSU-MM01 dataset.

Setting	All S	earch	Indoor Search			
Setting	R-1	mAP	R-1 mAP 80.3 83.3 83.2 (+2.9) 85.3 (+2.0)			
DEEN [39]	74.7	71.8	80.3	83.3		
+Ours	76.2 (+1.5)	73.0 (+1.2)	83.2 (+2.9)	85.3 (+2.0)		
ViT-B [49]	66.0	63.1	69.9	75.1		
+Ours	70.2(+4.2)	66.7 (+3.6)	71.9(+2.0)	76.4(+1.3)		

Experiments

			SYSU-	MM01			RegDB					
Methods	All Search			Indoor Search			VIS to IR			IR to VIS		
	R-1	R-10	mAP	R-1	R-10	mAP	R-1	R-10	mAP	R-1	R-10	mAP
BDTR[40]	17.0	55.4	19.7	-	-	-	33.6	58.6	32.8	32.9	58.5	32.0
$D^2RL[5]$	28.9	70.6	29.2	-	-	-	43.4	66.1	44.1	-	-	-
Hi-CMD[41]	34.9	77.6	35.9	-	-	-	70.9	86.4	66.0	-	-	-
AlignGAN[10]	42.4	85.0	40.7	45.9	87.6	54.3	57.9	-	53.6	56.3	-	53.4
DDAG[36]	54.8	90.4	53.0	61.0	94.1	68.0	69.3	86.2	63.5	68.1	85.2	61.8
LbA[42]	55.4	-	54.1	58.5	-	66.3	74.2	-	67.6	67.5	-	72.4
NFS[43]	56.9	91.3	55.5	62.8	96.5	69.8	80.5	91.6	72.1	78.0	90.5	69.8
CM-NAS[44]	60.8	92.1	58.9	68.0	94.8	52.4	82.8	95.1	79.3	81.7	94.1	77.6
MCLNet[37]	65.4	93.3	62.0	72.6	97.0	76.6	80.3	92.7	73.1	75.9	90.9	69.5
FMCNet[45]	66.3	-	62.5	68.2	-	74.1	89.1	-	84.4	88.4	-	83.9
SMCL[46]	67.4	92.9	61.8	68.8	96.6	75.6	83.9	-	79.8	83.1	-	78.6
DART[20]	68.7	96.4	66.3	72.5	97.8	78.2	83.6	-	75.7	82.0	-	73.8
CAJ[11]	69.9	95.7	66.9	76.3	97.9	80.4	85.0	95.5	79.1	84.8	95.3	77.8
MPANet[47]	70.6	96.2	68.2	76.7	98.2	81.0	82.8	-	80.7	83.7	-	80.9
MMN [25]	70.6	96.2	66.9	76.2	97.2	79.6	91.6	97.7	84.1	87.5	96.0	80.5
MAUM [48]	71.7	-	68.8	77.0	-	81.9	87.9	-	-	87.0	-	84.3
CAJ+ [12]	71.5	96.2	68.2	78.4	98.4	82.0	85.7	95.5	79.7	84.9	95.9	78.6
DEEN [39]	74.7	97.6	71.8	80.3	99.0	83.3	91.1	97.8	85.1	89.5	96.8	83.4
Ours	75.4	97. 7	72.4	84.7	99.3	87.0	92.8	97.9	88.6	91.0	97.5	86.6

Table 2: Comparisons between the proposed method and some state-of-the-art methods on the SYSU-MM01 and RegDB datasets.

Experiments

• MRLE provides an efficient way to provide diverse transformations from multi-spectral images to single-spectral images, while the RRLE gets rid of the dependence on the multiple spectral images and makes such a linear transformation directly on the local part.

Thanks for your attention!