

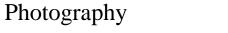
Diffusion Priors for Variational Likelihood Estimation and Image Denoising

Jun Cheng, Shan Tan* Huazhong University of Science and Technology, Wuhan, China

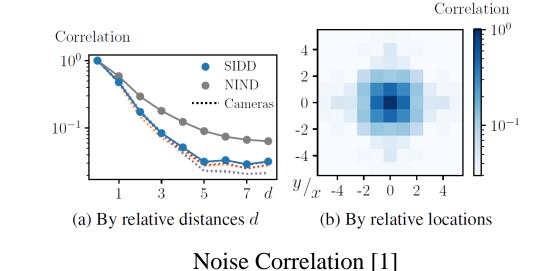
Introduction

Real-world Image Denoising:

- Noise is complex: signal-dependent and spatially correlated.
- Supervised or self-supervised training require large amounts of (paired) images



Fluorescence microscopy



Designing effective and data-efficient real-world denoising methods is important!

[1] Lee W, Son S, Lee K M. Ap-bsn: Self-supervised denoising for real-world images via asymmetric pd and blind-spot network. CVPR2022: 17725-17734.

Introduction

Diffusion Priors for Image Restoration

- ➢ Well developed for linear degradations combined with Gaussian noise
- Struggle to handle complex or unknown noise types. e.g., DDRM, DDNM, DPS

Real-world Noise Model

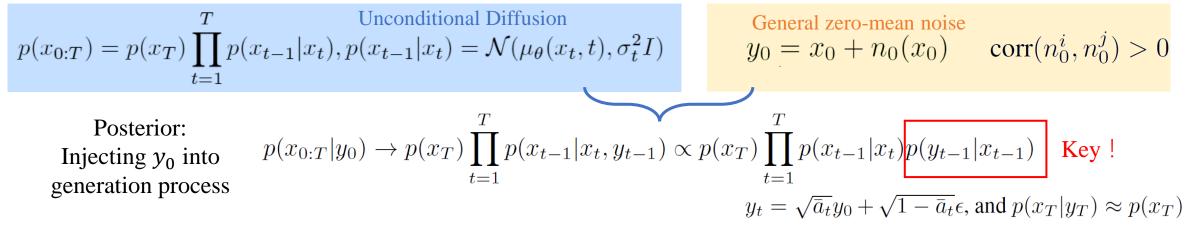
- > Can be approximated with a structured multivariate Gaussian (MVG)
- However, MVG has expensive and unknown covariance

Motivation: Injecting i.ni.d. likelihood and Variational Bayes into reverse diffusion process

Main Contribution

- We propose adaptive likelihood estimation and MAP inference based on diffusion priors and variational Bayes to address real-world complex noise.
- We explore the local prior exhibited by diffusion models pre-trained with LR images.

General conditional generation



Naive Image Denoising

Using structured Gaussian to model real-world noise

 $p(y_0|x_0) = \mathcal{N}(x_0, \Sigma(x_0)) \longrightarrow p(y_{t-1}|x_{t-1}) = \mathcal{N}(y_{t-1}; x_{t-1}, \Sigma(x_{t-1})) \text{ with } \Sigma(x_{t-1}) = \overline{\alpha}_{t-1}\Sigma(x_0)$

Promising (again the Gaussian form), but

- > unknown covariance $\Sigma(x_0)$ Need methods to handle them!
- computationally expensive with dense covariance

Variational Denoising with Adaptive Likelihood Estimation

$$p(y_{t-1}|x_{t-1}, \phi_{t-1}) = \mathcal{N}(y_{t-1}; x_{t-1}, \operatorname{diag}(\phi_{t-1})^{-1}), \phi_{t-1} = \frac{\phi_0}{\overline{\alpha}_{t-1}} \qquad \begin{array}{l} \operatorname{Diagonal precision matrix} \\ \operatorname{Reducing complexity!} \\ p(\phi_{t-1}) = \prod_{i=1}^{N} \operatorname{Gamma}(\phi_{t-1}^i; \alpha_{t-1}, \beta_{t-1}), \text{ with } \alpha_{t-1} = \alpha, \beta_{t-1} = \beta \overline{\alpha}_{t-1} \qquad \begin{array}{l} \operatorname{Precision priors} \\ \operatorname{Estimating posterior!} \\ \operatorname{Estimating posterior!} \\ \text{both } x_t \text{ and } \phi_t \quad p(x_{t-1}, \phi_{t-1}|x_t, y_{t-1}) = \frac{p(y_{t-1}|x_{t-1}, \phi_{t-1})^{\frac{1}{\gamma}}p(\phi_{t-1})p(x_{t-1}|x_t)}{p(y_{t-1}|x_t)} \quad \gamma \leq 1 \text{ is the temperature parameter} \\ \end{array}$$

$$\begin{array}{c} \operatorname{Variational approximation} \\ \operatorname{distribution} \quad g(x_{t-1}, \phi_{t-1}) = \ g(x_{t-1})g(\phi_{t-1}) \\ \operatorname{Update } g(\phi_{t-1}) = \prod_{i=1}^{N} \operatorname{Gamma}(\hat{\alpha}_{t-1}^i, \hat{\beta}_{t-1}^i) \\ \operatorname{Update } g(\phi_{t-1}) = \prod_{i=1}^{N} \operatorname{Gamma}(\hat{\alpha}_{t-1}^i, \hat{\beta}_{t-1}^i) \\ \end{array}$$

MAP estimation with updated likelihood

Given updated noise posterior $g(\phi_{t-1})$

Updated likelihood
$$p(y_{t-1}|x_{t-1}) = E_{\phi_{t-1} \sim g(\phi_{t-1})} p(y_{t-1}|x_{t-1}, \phi_{t-1})$$

$$\begin{aligned}
x_{t-1}^* &= \operatorname{argmax} \log p(y_{t-1}|x_{t-1}) + \log p(x_{t-1}|x_t) & \text{MAP inference to get} \\
&\approx \operatorname{argmax} E_{\phi_{t-1}} \log p(y_{t-1}|x_{t-1}, \phi_{t-1}) + \log p(x_{t-1}|x_t) & \text{optimal } x_{t-1}^* \text{ at each step} \\
&= \operatorname{argmax} - (x_{t-1} - y_{t-1})^2 E(\phi_{t-1}) - \frac{(x_{t-1} - \mu_{\theta}(x_t, t))^2}{\sigma_t^2} \\
&= \operatorname{combination between observation and prior} \\
&= \left(\hat{\pi}_{t-1}y_{t-1} + (1 - \hat{\pi}_{t-1})\mu_{\theta}(x_t, t)\right), \text{ with } \hat{\pi}_{t-1} = \frac{\sigma_t^2}{\sigma_t^2 + 1/E(\phi_{t-1})}
\end{aligned}$$

Rectification of $1/\mathbf{E}(\phi_{t-1})$

$$\overline{1/E(\phi_{t-1})} = \text{Conv}(1/E(\phi_{t-1}), G(l, s)), \hat{\pi}_{t-1} = \frac{\sigma_t^2}{\sigma_t^2 + \overline{1/E(\phi_{t-1})}}$$

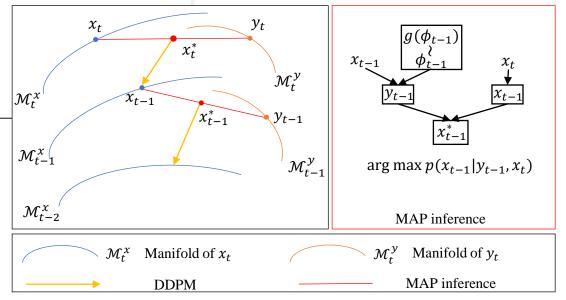
Whole procedure

NEURAL INFORMATION PROCESSING SYSTEMS

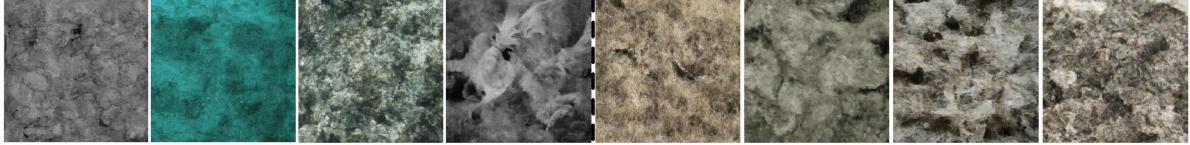
Algorithm 1 Difusion priors-based variational image denoising

Input: Pre-trained diffusion model, noisy observation y_0 , hyperparameters α, β , temperature γ 1: $x_T \sim \mathcal{N}(0, I), \mathbf{E}(\phi_T) = \vec{1}$ 2: for $t = T, \dots, 1$ do 3: Compute $\mu_{\theta}(x_t, t)$ based on Eq. (4); Compute y_{t-1} based on Eq. (7) Set $\hat{\mu}_{t-1}^{\text{old}} = \vec{0}, \hat{\mu}_{t-1} = \mu_{\theta}(x_t, t)$ 4: while $\|\hat{\mu}_{t-1}^{\text{old}} - \hat{\mu}_{t-1}\|_2^2 \ge 1e^{-6}$ do 5: Update $g(x_{t-1}) = \mathcal{N}(\hat{\mu}_{t-1}, \hat{\sigma}_{t-1}^2)$ using Eq. (12) 6: Update $g(\phi_{t-1}) = \prod_{i=1}^{N} \text{Gamma}(\hat{\alpha}_{t-1}^{i}, \hat{\beta}_{t-1}^{i})$ using Eq. (14) 7: 8: x_t end while Solve optimal x_{t-1} using Eq. (15) or Eq. (17) 9: 10: **end for** \mathcal{M}_t^x 11: return x_0 x_{t-1}

Visual undertanding



Local Diffusion Priors



256×256 images sampled from 128×128 diffusion model

512×512 images sampled from 256×256 diffusion model

- Generated textures in HR images from LR diffusion model mainly focus on local areas
- local property of LR diffusion models is similar to traditional TV priors and Markov random fields

Pre-trained LR diffusion prior For HR noisy images is directly feasible!

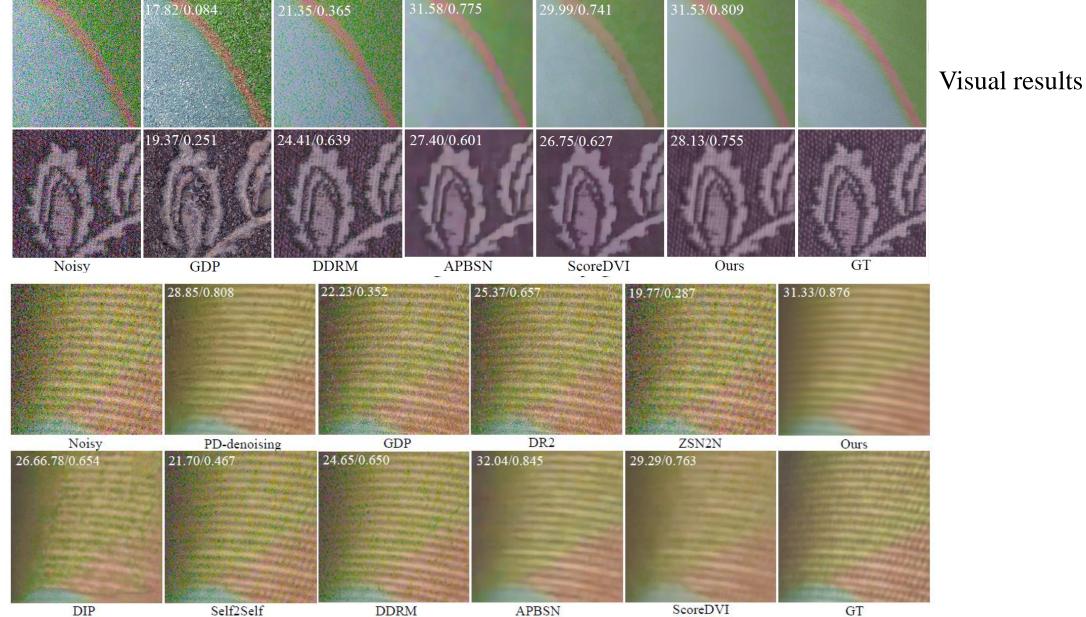
Real-world denoising

Table 2: Quantitative comparisons (PSNR(dB)/SSIM) of different methods on diverse real-world image datasets. The best and second-best PSNR/SSIM results are marked in **bold** and <u>underlined</u>.

Methods	SIDD Validation [1]	FMDD [51]	PolyU [47]	CC [30]	Average
DIP [42]	32.11/0.740	32.90/0.854	37.17/0.912	35.61/0.912	34.45/0.855
Self2Self [36]	29.46/0.595	30.76/0.695	<u>38.33/0.962</u>	37.45/0.948	34.00/0.800
PD-denoising [52]	33.97/0.820	33.01/0.856	37.04/0.940	35.85/0.923	34.97/0.885
ZS-N2N [27]	25.58/0.433	31.61/0.767	36.05/0.916	33.58/0.854	31.71/0.743
ScoreDVI [7]	34.75/0.856	<u>33.10</u> / 0.865	37.77/0.959	37.09/0.945	<u>35.68/0.906</u>
GDP [12]	27.65/0.615	27.68/0.698	32.30/0.905	31.45/0.916	29.77/0.784
DR2 [45]	32.02/0.728	30.52/0.813	34.37/0.925	32.30/0.876	32.30/0.836
DDRM [19]	33.14/0.796	32.54/0.837	33.14/0.767	36.04/0.923	33.72/0.831
Ours	<u>34.76</u> / 0.887	33.14 / <u>0.860</u>	38.71/0.970	38.01/0.959	36.16/0.919
APBSN [23]	36.80 / <u>0.874</u>	31.99/0.836	37.03/0.951	34.88/0.925	35.18/0.897

Our method performs best among zero-shot methods

> Our approach effectively removes severe noise while preserving image details and textures.



0.20

Ablations on adaptive likelihood estimation and local Gaussian convolution

(a) Visual results of $\hat{\beta}_0/\hat{\alpha}_0$

40 0.15 Est Noise Var 35 PSNR 30 25 0.05 20 15 -0.00 1200 0 200 800 1000 400 600 Image No.

Noise is adaptively estimated

(b) PSNR vs average $\hat{\beta}_0/\hat{\alpha}_0$.

Figure 4: The estimated noise variance $1/E(\phi_0) = \hat{\beta}_0/\hat{\alpha}_0$ on SIDD dataset

45

with ALE	with Gaussian Conv	SIDD	FMDD	PolyU	CC
×	×	32.12/0.741	27.07/0.530	35.40/0.895	33.10/0.830
\checkmark	×	34.63/0.870	33.11/ 0.865	38.70/0.969	37.82/0.956
\checkmark	\checkmark	34.76/0.887	33.14 /0.860	38.71/0.970	38.01/0.959

NEURAL INFORMATION PROCESSING SYSTEMS

Ablations on Local diffusion priors

Res.: Train \rightarrow Test	SIDD	Res.: Train \rightarrow Test	CC	PolyU	FMDD	LR diffusion performs
$128 \rightarrow 256$	34.80 /0.836	$256 \rightarrow 512$	38.01/0.959	38.71/0.970	33.14/0.860	1
$256 \rightarrow 256$	34.76/ 0.887	$512 \rightarrow 512$	37.01/0.950	38.33/0.966	33.02/0.859	best generally

Application to other non-Gaussian noises

CBSD68 [28]	Poisson ($\lambda = 30$)	Bernoulli $(p = 0.2)$	KodaK [13]	Poisson ($\lambda = 30$)	Bernoulli $(p = 0.2)$
ZS-N2N	27.55/0.781	20.20/ 0.828	ZS-N2N	28.09/0.750	19.98/ 0.820
Ours	29.24/0.833	26.11 /0.784	Ours	30.56/0.839	27.17 /0.799

Application to demosaicing

Table 8: Results of image demosaicing

Dataset	Set14	CBSD68
DDRM	24.68/0.714	24.52/0.705
Ours	26.02/0.756	25.43/0.732

Thanks!