

DenoiseRep: Denoising Model for Representation Learning

Zhengrui Xu^{1†} zrxu23@bjtu.edu.cn **Guan'an Wang**^{† ‡} guan.wang0706@gmail.com Xiaowen Huang^{1,2,3} * xwhuang@bjtu.edu.cn

Jitao Sang^{1,2,3} jtsang@bjtu.edu.cn

¹School of Computer Science and Technology, Beijing Jiaotong University
²Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University
³Key Laboratory of Big Data & Artificial Intelligence
in Transportation(Beijing Jiaotong University), Ministry of Education

[†]Equal Contribution. [‡]Project Lead. ^{*}Corresponding Author.

1. Introduction

2. Methodology

- ➢ Joint Feature Extraction and Feature Denoising (*DenoiseRep*[−])
- ➢ Fuse Feature Extraction and Feature Denoising (DenoiseRep)
- Pipeline of our proposed *DenoiseRep*

3. Experiments

- Analysis of Generalization ability
- Analysis of Label Informations
- Analysis of Parameter Fusion

Introduction

- Diffusion Model
 - > A powerful generative model
 - Generate images through denoising
- Stable
 Midjourney

 Image: Stable of the stable o

- Representational Learning
 - Representation learning is important in discriminative tasks(classification, detection, retrieval, segmentation...)
- Contribution
 - **We propose a novel Denoising Model for Representation Learning (***DenoiseRep***).**
 - > We propose a denoising method without additional inference time.
 - We validate the effectiveness and generalization of our algorithm on multiple datasets and various discrimination tasks.

1. Introduction

2. Methodology

- ➢ Joint Feature Extraction and Feature Denoising (DenoiseRep[−])
- > Fuse Feature Extraction and Feature Denoising (*DenoiseRep*)
- Pipeline of our proposed *DenoiseRep*

3. Experiments

- Analysis of Generalization ability
- Analysis of Label Informations
- Analysis of Parameter Fusion

Methodology

■ Joint Feature Extraction and Feature Denoising (*DenoiseRep*⁻)

We refer to the diffusion modeling approach to denoise the noisy features through T-steps to obtain clean features. The method of adding denoising process after backbone is called *DenoiseRep*⁻.

Methodology

■ Fuse Feature Extraction and Feature Denoising (*DenoiseRep*)

We propose a novel Denoising Model for Representation Learning (*DenoiseRep*) that adds denoising layers to each embedding layer in the backbone network and fuses the parameters of the denoising layers into the parameters of the corresponding embedding layers and theoretically demonstrates their equivalence.

P How to fuse feature extraction and feature denoising?

$$\begin{array}{c} \textcircled{O} \\ \hline \textbf{DDPM:} \quad X_{t-1} = \frac{1}{\sqrt{a_t}} (X_t - \frac{1 - a_t}{\sqrt{1 - \bar{a_t}}} D_{\theta}(X_t, t)) + \sigma_t z \quad \text{Feature extraction:} \quad Y = WX + b \\ \hline \textbf{I}_{t-1} = [W - C_1(t)WW_D]X_t + WC_2(t)C_3 + b \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}X_t - \sigma_t z \quad \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}X_t - \sigma_t z \quad \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline \textbf{I}_{t-1} = \frac{1 - a_t}{\sqrt{a_t}\sqrt{1 - \bar{a_t}}} D_{\theta}Y_t - \sigma_t z \\ \hline$$

Methodology

■ Pipeline of our proposed *DenoiseRep*

Training loss:

L

$$coss_p = \sum_{i=1}^{N} |\epsilon_i - D_{\theta_i}(X_{t_i}, t_i)|$$

 $Loss = (1 - \lambda)Loss_l + \lambda Loss_p$

- In training: We freeze the original network parameters, train only the denoising layer parameters, and input the diffusion features into DenoiseRep for prediction.
- In inference: We merge the parameters of the feature layer and the denoising layer, merging the two branches into one without additional inference time.

- 1. Introduction
- 2. Methodology
 - ➢ Joint Feature Extraction and Feature Denoising (DenoiseRep[−])
 - Fuse Feature Extraction and Feature Denoising (DenoiseRep)
 - Pipeline of our proposed DenoiseRep

- Analysis of Generalization Ability
- Analysis of Label Informations
- Analysis of Parameter Fusion

Analysis of Generalization Ability

Task	Model	Backbone	Dataset	Metric	Baseline	+DenoiseRep
Classification	SwinT [39]	SwinV2-T	ImageNet-1k	acc@1	81.82%	82.13%
Person-ReID	TransReID-SSL [41]	ViT-S	MSMT17	mAP	66.30%	67.33%
Detection	Mask-RCNN [19]	SwinV2-T	COCO	AP	42.80%	44.30%
Segmentation	FCN [40]	ResNet-50	ADE20K	BIoU	28.70%	29.90%

Our proposed *DenoiseRep* is a versatile method that can be incrementally applied to various discriminative tasks. The table demonstrates that *DenoiseRep* yields stable and substantial improvements across image classification, object detection, image segmentation, and person re-identification.

■ Analysis of Generalization Ability

Mathad	Detecto	Dorom	8	acc@1	acc@5		
Method	Datasets	Param	Baseline	+DenoiseRep	Baseline	+DenoiseRep	
SwinV2-T [39]	ImageNet-1k	28M	81.82%	82.13%	95.88%	96.06%	
SwinV2-S [39]	ImageNet-1k	50M	83.13%	83.97%	96.62%	96.86%	
SwinV2-B [39]	ImageNet-1k	88M	84.20%	84.31%	96.93%	97.06%	
Vmanba-T 38	转到页面: 12 et-lk	30M	82.38%	82.51%	95.80%	95.89%	
Vmanba-S [38]	ImageNet-1k	50M	83.12%	83.27%	96.04%	96.22%	
Vmanba-B [38]	ImageNet-1k	89M	83.83%	83.91%	96.55%	96.70%	
ViT-S [14]	ImageNet-1k	22M	83.87%	84.02%	96.73%	96.86%	
ViT-B [14]	ImageNet-1k	86M	84.53%	84.64%	97.15%	97.23%	
ResNet50 [18]	ImageNet-1k	26M	76.13%	76.28%	92.86%	92.95%	
ViT-S [14]	Cifar-10	22M	96.13%	96.20%	-	-	
ViT-B [14]	Cifar-10	87M	98.02%	98.31%	-	_	

Classification

Methods	Backbones	AP		8	AP ₅₀	AP ₇₅		
		Baseline	+DenoiseRep	Baseline	+DenoiseRep	Baseline	+DenoiseRep	
	SwinV2-T	42.8%	44.3%	65.1%	67.1%	47.0%	48.6%	
Mask-RCNN	SwinV2-S	48.2%	49.0%	69.9%	70.9%	52.8%	53.8%	
	ResNet-50	42.6%	43.2%	63.7%	65.0%	46.4%	46.8%	
Faster-RCNN	ResNet-50	37.4%	38.3%	58.1%	58.8%	40.4%	41.0%	
ATSS	ResNet-50	39.4%	39.9%	57.6%	58.2%	42.8%	43.2%	
YOLO	DarkNet-53	27.9%	28.4%	49.2%	50.3%	28.3%	27.8%	
DETR	ResNet-50	39.9%	40.8%	60.4%	59.9%	41.7%	42.9%	
CenterNet	ResNet-50	40.2%	40.6%	58.3%	59.1%	43.9%	44.0%	

Mathod	Backbone	MSN	1T17	Market1501		DukeMTMC		CUHK03-L	
Wiethou	Backbolle	mAP	R1	mAP	R1	mAP	R1	mAP	R1
MGN 59	ResNet-50	-	-	86.90	95.70	78.40	88.70	67.40	68.00
OSNet 74	OSNet	52.90	78.70	84.90	94.80	73.50	88.60		-
BAT-net [15]	GoogLeNet	56.80	79.50	87.40	95.10	77.30	87.70	76.10	78.60
ABD-Net 8	ResNet-50	60.80	82.30	88.30	95.60	78.60	89.00	-	-
RGA-SC 68	ResNet-50	57.50	80.30	88.40	96.10	-	-	77.40	81.10
ISP 76	HRNet-W32	-	-	88.60	95.30	80.00	89.60	74.10	76.50
CDNet [29]	CDNet	54.70	78.90	86.00	95.10	76.80	88.60	-	-
Nformer 60	ResNet-50	59.80	77.30	91.10	94.70	83.50	89.40	78.00	77.20
TransReID [20]	ViT-base-ics	67.70	85.30	89.00	95.10	82.20	90.70	84.10	86.40
TransReID	ViT-base	61.80	81.80	87.10	94.60	79.60	89.00	82.30	84.60
TransReID-SSL [41]	ViT-small	66.30	84.80	91.20	95.80	80.40	87.80	83.50	85.90
TransReID-SSL	ViT-base	75.00	89.50	93.10	96.52	84.10	92.60	87.80	89.20
CLIP-REID 32	ViT-base	75.80	89.70	90.50	95.40	83.10	90.80	_	-
TransReID + DenoiseRep	ViT-base-ics	68.10	85.72	89.56	95.50	82.35	90.87	84.15	86.39
TransReID + DenoiseRep	ViT-base	62.23	82.02	87.25	94.63	80.12	89.33	82.44	84.61
TransReID-SSL + DenoiseRep	ViT-small	67.33	85.50	92.05	96.68	81.22	88.72	84.11	86.47
TransReID-SSL + DenoiseRep	ViT-base	75.35	89.62	93.26	96.55	84.31	92.90	88.08	89.29
CLIP-REID + DenoiseRep	ViT-base	76.30	90.60	91.10	95.80	83.70	91.60	-	-

Person-ReID

Methods	Backbones	aAcc		1	B-IoU	mIoU		
		Baseline	+DenoiseRep	Baseline	+DenoiseRep	Baseline	+DenoiseRep	
FCN 40	ResNet-50	0.774	0.779	0.287	0.299	0.359	0.365	
FCN	ResNet-101	0.793	0.796	0.306	0.316	0.396	0.404	
SegFormer 63	mit_b0	0.782	0.788	0.292	0.297	0.374	0.381	
SegFormer	mit_b1	0.812	0.816	0.341	0.348	0.422	0.425	

Segmentation

Detection

Analysis of Label Informations

Method	DukeMTMC(%)	MSMT17(%)	Market1501(%)	CUHK-03(%)
TransReID-SSL	80.40	66.30	91.20	83.50
+DenoiseRep (label-free)	80.92 († 0.52)	66.87 († 0.57)	91.82 (↑ 0.62)	83.72 († 0.22)
+DenoiseRep (label-aug)	81.22 († 0.82)	67.33 († 1.03)	92.05 († 0.85)	84.11 († 0.61)
+DenoiseRep (merged ds)	80.98 († 0.58)	66.99 († 0.69)	91.80 († 0.60)	83.86 († 0.36)

- As shown in the table line2, compared with baseline method (line1), the baseline method performs better after adding our label-free method.
- Introducing supervised training label information can further improve performance.
- Since our method can perform unsupervised feature denoising, adding more data to train the model can further improve its performance.

Analysis of Parameter Fusion

Method	DukeMTMC	MSMT17	Market1501	CUHK-03	Inference Time
TransReID-SSL	80.40%	66.30%	91.20%	83.50%	0.34s
+DenoiseRep ⁻	80.76%	66.81%	91.07%	83.59%	0.39s (+15%)
+DenoiseRep	81.22%	67.33%	92.05%	84.11%	0.34s (+0%)

- The proposed *DenoiseRep* is computation-free. We proved by theoretical derivation that inserting our denoising layer into each feature layer and fusion it does not introduce additional computation.
- Adding *DenoiseRep* ⁻ is able to improve the performance but brings extra inference latency (about 15%).
- Adopting *DenoiseRep* achieves a greater increase, it denoise the features on each layer, which can better remove noise at each stage. And *DenoiseRep* does not take extra inference latency cost.

- 1. Introduction
- 2. Methodology
 - ➢ Joint Feature Extraction and Feature Denoising (DenoiseRep[−])
 - Fuse Feature Extraction and Feature Denoising (DenoiseRep)
 - Pipeline of our proposed DenoiseRep
- 3. Experiments
 - Analysis of Generalization ability
 - Analysis of Label Informations
 - Analysis of Parameter Fusion

- In this work, we demonstrate that the diffusion model paradigm is effective for feature level denoising in discriminative model, and propose a computation-free and label-free method: *DenoiseRep*.
- It utilizes the denoising ability of diffusion models to denoise the features in the feature extraction layer, and fuses the parameters of the denoising layer and the feature extraction layer, further improving retrieval accuracy without incurring additional computational costs.
- We validate the effectiveness of the *DenoiseRep* method on multiple common image discrimination task datasets.

Thank you

 $\langle \rangle$

Reporter: Zhengrui Xu Email: zrxu23@bjtu.edu.cn