

GACL: Exemplar-Free Generalized Analytic Continual Learning

Huiping Zhuang^{1*}, Yizhu Chen^{1*}, Di Fang¹, Run He¹, Kai Tong¹, Hongxin Wei², Ziqian Zeng^{1†}, Cen Chen^{1,3,5†}

¹South China University of Technology, China

²Southern University of Science and Technology, China

³Shenzhen Institute, Hunan University, China

⁴Pazhou Lab, China

* Equal contribution

+ Corresponding authors

The 38th Conference on Neural Information Processing Systems (NeurIPS 2024)

Continual learning, Incremental learning, Lifelong learning

Enables **continuous knowledge acquisition**, mimicking human behavior.

Practical Significance:

- > No need for retraining
- Adapt used models to new tasks

Class Incremental Learning (CIL) aims to continually build a holistic classifier among **all seen classes** with **non-overlapping classes** arriving sequentially.

Zhou, Da-Wei, et al. "Class-incremental learning: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

NEURAL INFORMATION PROCESSING SYSTEMS

Generalized Class Incremental Learning (GCIL) simulates **real-world** incremental learning, as **distributions of data category and sample size could be uneven** between tasks.

NEURAL INFORMATION PROCESSING SYSTEMS

Mi, Fei, et al. "Generalized class incremental learning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020. Moon, Jun-Yeong, et al. "Online class incremental learning on stochastic blurry task boundary via mask and visual prompt tuning." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

NEURAL INFORMATION PROCESSING SYSTEMS

- > Model Learns in **multiple stages** and different tasks.
- New model does well in new tasks.
- Performance decreases for the previous tasks.

Moon, Jun-Yeong, et al. "Online class incremental learning on stochastic blurry task boundary via mask and visual prompt tuning." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

> Replay-based CIL uses historical exemplars to replay.

- > Invade the data privacy
- ➤ Hard to cross domain

Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2017. Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

Prototype-based

 $\mathcal{N}(0,1)$

⊖ noise

> Exemplar-free CIL (EFCIL) learns without storing any historical exemplars.

Regularization-based > Prevent large drift of important weights

new classes

of current tas

 $\mathbf{x}_t \in D_t$

A prototype is selected for each category

Hard to resist forgetting Hard to cross domain

old prototype

augmented prototype

EWC θ^{*}_A • Fine-Turn • θ^{*}_B Channel A L2 regularization

Fig. 2. The trajectory of parameter changes in parameter space

Elastic Weight Consolidation

feature extracto

old prototypes

(one per class)

classifie

Liu, Liyang, et al. "Incdet: In defense of elastic weight consolidation for incremental object detection." IEEE transactions on neural networks and learning systems 32.6 (2020): 2306-2319. Zhu, Fei, et al. "Prototype augmentation and self-supervision for incremental learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Analytic Continual Learning (ACL) makes the **equivalence** between CIL and joint learning in **linear classifiers**.

To make the equivalence

However, existing ACL are designed for traditional CIL scenarios.

2AL INFORMAT

Analytic learning (AL): Use Least Square (LS) solutions to train the network Block-wise recursive Moore-Penrose inverse (BRMP): convert LS to blockwise calculation

11

Address the uneven data distributions of GCIL

Extend ACL to GCIL tasks

Proposed Method

- Exposed classes in task k: classes that have appeared in previous tasks 1 to k – 1
- Unexposed classes in task k: classes that make their initial appearance
- e.g., in task 2, exposed classes: C & D, unexposed class: B

Learning problem in task **k**

$$oldsymbol{Y}_k^{ ext{train}} = egin{bmatrix} oldsymbol{ar{Y}}_k^{ ext{train}} & oldsymbol{ ilde{Y}}_k^{ ext{train}} \ oldsymbol{Unexposed} & oldsymbol{ ext{Class Label}} & oldsymbol{ ext{Label}} \ oldsymbol{ ext{class Label}} & oldsymbol{ ext{class Label}} \ oldsymbol{ ext{class Label}} \ oldsymbol{ ext{Label}}$$

Proposed Method Generalized Analytic Class Incremental Learning

Learning problem in task k

NEURAL INFORMATION PROCESSING SYSTEMS

 $\underset{\boldsymbol{W}_{\text{FCN}}^{(k)}}{\operatorname{argmin}} \left\| \begin{bmatrix} \boldsymbol{Y}_{1:k-1}^{\text{total}} \\ \bar{\boldsymbol{Y}}_{k}^{\text{train}} \end{bmatrix} \boldsymbol{0} - \begin{bmatrix} \boldsymbol{X}_{1:k-1}^{\text{total}} \\ \boldsymbol{X}_{k}^{(B)} \end{bmatrix} \boldsymbol{W}_{\text{FCN}}^{(k)} \right\|_{\text{F}}^{2} + \gamma \left\| \boldsymbol{W}_{\text{FCN}}^{(k)} \right\|_{\text{F}}^{2}$

Unexposed Exposed Class Label Class Label

 $\hat{\boldsymbol{Y}} \text{ Solution of Recursive Least Square}$ $\hat{\boldsymbol{W}}_{\text{FCN}}^{(k)} = \left[\hat{\boldsymbol{W}}_{\text{FCN}}^{(k-1)} - \boldsymbol{R}_{k} \boldsymbol{X}_{k}^{(B)\top} \boldsymbol{X}_{k}^{(B)} \hat{\boldsymbol{W}}_{\text{FCN}}^{(k-1)} + \boldsymbol{R}_{k} \boldsymbol{X}_{k}^{(B)\top} \bar{\boldsymbol{Y}}_{k}^{\text{train}} \quad \boldsymbol{R}_{k} \boldsymbol{X}_{k}^{(B)\top} \tilde{\boldsymbol{Y}}_{k}^{\text{train}} \right]$ $= \hat{\boldsymbol{W}}_{\text{unexposed}}^{(k)} + \hat{\boldsymbol{W}}_{\text{ECLG}}^{(k)}$ $\hat{\boldsymbol{W}}_{\text{unexposed}}^{(k)} = \left[\hat{\boldsymbol{W}}_{\text{FCN}}^{(k-1)} - \boldsymbol{R}_{k} \boldsymbol{X}_{k}^{(B)\top} \boldsymbol{X}_{k}^{(B)} \hat{\boldsymbol{W}}_{\text{FCN}}^{(k-1)} \quad \boldsymbol{R}_{k} \boldsymbol{X}_{k}^{(B)\top} \tilde{\boldsymbol{Y}}_{k}^{\text{train}} \right]$ $\hat{\boldsymbol{W}}_{\text{ECLG}}^{(k)} = \left[\boldsymbol{R}_{k} \boldsymbol{X}_{k}^{(B)\top} \bar{\boldsymbol{Y}}_{k}^{\text{train}} \quad \boldsymbol{0} \right] \quad \text{ECLG Module}$ $\boldsymbol{R}_{k} = \boldsymbol{R}_{k-1} - \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(B)\top} (\boldsymbol{I} + \boldsymbol{X}_{k}^{(B)} \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(B)\top})^{-1} \boldsymbol{X}_{k}^{(B)} \boldsymbol{R}_{k-1} \qquad 13$

Experiments Compare with State-of-the-arts

- NEURAL INFORMATION PROCESSING SYSTEMS
- Outperform existing EFCIL methods by a considerable margin
- Better than most SOTA replay-based methods

Mem	Mathad	FECH	CIFAR-100 (%)			ImageNet-R (%)			Tiny-ImageNet (%)		
Size	Methou	EFUIL	$\mathcal{A}_{\mathrm{AUC}}$	$\mathcal{A}_{ ext{Avg}}$	$\mathcal{A}_{\mathrm{Last}}$	$\mathcal{A}_{\mathrm{AUC}}$	$\mathcal{A}_{ ext{Avg}}$	$\mathcal{A}_{\mathrm{Last}}$	$\mathcal{A}_{ m AUC}$	$\mathcal{A}_{\mathrm{Avg}}$	$\mathcal{A}_{\mathrm{Last}}$
2000	EWC++ [16]	×	$53.31_{\pm 1.70}$	$50.95_{\pm 1.50}$	$52.55_{\pm0.71}$	$36.31_{\pm 0.72}$	$39.87_{\pm 1.35}$	$29.52_{\pm 0.43}$	$52.43_{\pm 0.52}$	$54.61_{\pm 1.54}$	$37.67_{\pm 0.77}$
	ER [35]	×	$56.17_{\pm 1.84}$	$53.80_{\pm 1.46}$	$55.60_{\pm0.69}$	$39.31_{\pm0.70}$	$43.03_{\pm 1.19}$	$32.09_{\pm0.44}$	$55.69_{\pm0.47}$	$57.87_{\pm 1.42}$	$41.10_{\pm 0.57}$
	RM [32]	×	$53.22_{\pm 1.82}$	$52.99_{\pm 1.69}$	$55.25_{\pm0.61}$	$32.34_{\pm 1.88}$	$36.46_{\pm 2.23}$	$25.26_{\pm1.08}$	$49.28_{\pm0.43}$	57.74 _{±1.57}	$41.79_{\pm 0.34}$
	MVP-R [30]	×	$60.62_{\pm 1.03}$	$57.58_{\pm 0.56}$	$64.30_{\pm0.29}$	$47.16_{\pm 1.00}$	$\underline{50.36_{\pm 0.90}}$	$42.05_{\pm 0.15}$	$61.15_{\pm0.86}$	$62.41_{\pm 0.50}$	$51.12_{\pm 0.67}$
500	EWC++ [16]	×	$48.31_{\pm 1.81}$	$44.56_{\pm 0.96}$	$40.52_{\pm 0.83}$	$32.81_{\pm 0.76}$	$35.54_{\pm 1.69}$	$23.43_{\pm 0.61}$	$45.30_{\pm0.61}$	$46.34_{\pm 2.05}$	$27.05_{\pm 1.35}$
	ER [35]	×	$51.59_{\pm1.94}$	$48.03_{\pm 0.80}$	$44.09_{\pm 0.80}$	$35.96_{\pm0.72}$	$39.01_{\pm1.54}$	$26.14_{\pm 0.44}$	$48.95_{\pm0.58}$	$50.44_{\pm 1.71}$	$29.97_{\pm0.75}$
300	RM [32]	×	$41.07_{\pm 1.30}$	$38.10_{\pm 0.59}$	$32.66_{\pm 0.34}$	$22.45_{\pm 0.62}$	$22.08{\scriptstyle\pm1.78}$	$9.61_{\pm 0.13}$	$36.66_{\pm 0.40}$	$38.83_{\pm 2.33}$	$18.23_{\pm0.22}$
	MVP-R 30	×	$56.20_{\pm1.47}$	$53.61{\scriptstyle\pm0.04}$	$55.35_{\pm0.43}$	$43.28_{\pm 1.41}$	$45.74_{\pm0.97}$	$35.60_{\pm 1.18}$	$55.28_{\pm 1.42}$	$55.45_{\pm 1.02}$	$40.12_{\pm 0.40}$
	LwF [14]	\checkmark	$40.71_{\pm 2.13}$	$38.49_{\pm 0.56}$	$27.03_{\pm 2.92}$	$29.41_{\pm 0.83}$	$31.95_{\pm1.86}$	$19.67_{\pm 1.27}$	$39.88_{\pm 0.90}$	41.35 _{±2.59}	$24.93_{\pm 2.01}$
	L2P 36	\checkmark	$42.68_{\pm 2.70}$	$39.89_{\pm0.45}$	$28.59_{\pm 3.34}$	$30.21_{\pm0.91}$	$32.21_{\pm 1.73}$	$18.01_{\pm 3.07}$	$41.67_{\pm 1.17}$	$42.53_{\pm 2.52}$	$24.78_{\pm 2.31}$
0	DualPrompt 33	\checkmark	$41.34_{\pm 2.59}$	$38.59_{\pm0.68}$	$22.74_{\pm 3.40}$	$30.44_{\pm0.88}$	$32.54_{\pm 1.84}$	$16.07_{\pm 3.20}$	$39.16_{\pm 1.13}$	$39.81_{\pm 3.03}$	$20.42_{\pm 3.37}$
	MVP 30	\checkmark	$45.07_{\pm2.43}$	$44.93_{\pm 0.54}$	$39.94_{\pm0.47}$	$35.77_{\pm 2.55}$	$35.58_{\pm1.20}$	$22.06_{\pm 5.01}$	$46.43_{\pm 3.07}$	$45.41_{\pm 1.09}$	$28.21_{\pm 2.89}$
	SLDA 37	\checkmark	$53.00_{\pm3.85}$	50.09 _{±2.77}	$61.79_{\pm3.81}$	$33.11_{\pm 3.17}$	$33.78_{\pm1.76}$	$39.02_{\pm 1.30}$	$46.43_{\pm 3.07}$	$45.41_{\pm 4.43}$	53.13 _{±2.29}
	GACL (ours)	\checkmark	$\textbf{57.99}_{\pm 2.46}$	56.24 _{±3.12}	$\underline{70.31_{\pm 0.06}}$	$41.68_{\pm 0.78}$	$47.30_{\pm 0.84}$	$\underline{42.22_{\pm 0.10}}$	$\underline{63.14_{\pm 0.66}}$	$\underline{69.32_{\pm 0.87}}$	$\underline{62.68_{\pm0.08}}$

Experiments Ablation Study on the ECLG Module

- > The ECLG module captures knowledge from exposed-class labels
- Demonstrate competence with ECLG module

$r_{ m B}$	Datasat		With ECLG		Without ECLG		
	Dataset	$\mathcal{A}_{ m AUC}(\%)$	$\mathcal{A}_{ ext{Avg}}(\%)$	$\mathcal{A}_{\mathrm{Last}}(\%)$	$\mathcal{A}_{ m AUC}(\%)$	$\mathcal{A}_{ ext{Avg}}(\%)$	$\mathcal{A}_{ ext{Last}}(\%)$
10%	CIFAR-100	$\textbf{57.99}_{\pm 2.46}$	$56.24_{\pm 3.12}$	$70.31_{\pm0.06}$	$45.68_{\pm 7.74}$	$42.04_{\pm 4.52}$	$47.30_{\pm 2.61}$
	ImageNet-R	$41.68{\scriptstyle \pm 0.78}$	$47.30{\scriptstyle \pm 0.84}$	$42.22{\scriptstyle\pm0.10}$	$40.29_{\pm 2.23}$	$46.95_{\pm1.15}$	$41.67{\scriptstyle\pm 0.36}$
	Tiny-ImageNet	$63.14_{\pm0.66}$	$69.32_{\pm0.87}$	$62.68_{\pm0.08}$	$60.21_{\pm 1.86}$	$65.80_{\pm 1.20}$	$60.13_{\pm0.37}$
30%	CIFAR-100	$57.33_{\pm1.03}$	$\textbf{58.74}_{\pm 1.59}$	$69.90_{\pm0.01}$	$42.53_{\pm 1.97}$	$42.26_{\pm 1.75}$	$45.49_{\pm 1.17}$
	ImageNet-R	$42.19_{\pm0.44}$	$47.82{\scriptstyle\pm1.11}$	$42.90{\scriptstyle\pm0.08}$	$42.01{\scriptstyle\pm0.26}$	$46.95{\scriptstyle\pm1.15}$	$41.67_{\pm0.56}$
	Tiny-ImageNet	$60.73{\scriptstyle \pm 1.15}$	$67.31_{\pm1.14}$	$59.73_{\pm 2.55}$	$60.63_{\pm 1.86}$	$57.03_{\pm1.98}$	$60.13_{\pm0.55}$
50%	CIFAR-100	$56.74{\scriptstyle\pm1.14}$	$\textbf{58.29}_{\pm 1.95}$	$70.02_{\pm0.05}$	$40.91_{\pm 3.57}$	$47.25_{\pm 2.64}$	$58.61_{\pm 2.62}$
	ImageNet-R	$41.33_{\pm1.46}$	$\textbf{46.42}_{\pm 2.30}$	$42.92_{\pm0.17}$	$40.44_{\pm 3.14}$	$42.50_{\pm 3.43}$	$39.05_{\pm 1.65}$
	Tiny-ImageNet	$60.96{\scriptstyle\pm1.83}$	$66.28_{\pm 2.69}$	$62.24_{\pm0.10}$	$60.32_{\pm 4.20}$	$60.70_{\pm4.30}$	$56.97_{\pm 1.89}$

Experiments Robustness Analysis in Si-Blurry Setting

> Investigate with various disjoint class ratio and the blurry sample ratio

Demonstrate the robustness of the GACL

$m{r}_{ m D}$	Method	$\mathcal{A}_{ m AUC}(\%)$	$\mathcal{A}_{Avg}(\%)$	$\mathcal{A}_{ ext{Last}}(\%)$
	SLDA 37	$\underline{55.51_{\pm 1.93}}$	$\underline{53.94_{\pm 0.92}}$	$67.45_{\pm 0.26}$
0%	MVP-R [30]	$53.49_{\pm1.40}$	$50.73_{\pm0.37}$	$60.54_{\pm 2.03}$
	GACL (ours)	$49.96{\scriptstyle\pm0.61}$	$50.56_{\pm0.49}$	$69.94_{\pm0.09}$
	SLDA 37	53.00 _{±3.85}	$50.09_{\pm 2.77}$	$61.79_{\pm 3.81}$
50%	MVP-R [30]	$56.20_{\pm1.47}$	$53.61{\scriptstyle\pm0.04}$	$55.35_{\pm0.43}$
	GACL (ours)	$\underline{\textbf{57.99}_{\pm 2.46}}$	$\underline{\textbf{56.24}_{\pm 3.12}}$	$\textbf{70.31}_{\pm 0.06}$
	SLDA 37	65.46 _{±4.79}	$67.29_{\pm 5.28}$	$63.56_{\pm 2.68}$
100%	MVP-R [30]	$68.43_{\pm0.28}$	$68.04_{\pm1.48}$	$53.14{\scriptstyle\pm0.72}$
	GACL (ours)	$\underline{70.72_{\pm 0.32}}$	$\underline{\textbf{77.57}_{\pm 1.02}}$	$\underline{69.97_{\pm 0.03}}$

The performance at different disjoint class ratio with blurry sample ratio = 10% on CIFAR-100.

$r_{ m B}$	Method	$\mathcal{A}_{ m AUC}(\%)$	$\mathcal{A}_{\mathrm{Avg}}(\%)$	$\mathcal{A}_{ ext{Last}}(\%)$
	SLDA 37	$53.00_{\pm3.85}$	$50.09_{\pm 2.77}$	$61.79_{\pm3.81}$
10%	MVP-R [30]	$56.20_{\pm1.47}$	$53.61{\scriptstyle\pm0.04}$	$55.35_{\pm0.43}$
	GACL (ours)	$\underline{\textbf{57.99}_{\pm 2.46}}$	$\underline{\textbf{56.24}_{\pm 3.12}}$	$\underline{70.31_{\pm 0.06}}$
	SLDA 37	$54.55_{\pm 4.66}$	$54.06_{\pm 2.41}$	$63.04_{\pm 2.56}$
30%	MVP-R [30]	$\underline{59.65_{\pm 2.04}}$	$58.31_{\pm 1.52}$	$58.16{\scriptstyle\pm1.38}$
	GACL (ours)	$57.33_{\pm1.03}$	$\underline{\textbf{58.74}_{\pm 1.59}}$	$\underline{\textbf{69.90}_{\pm 0.01}}$
	SLDA 37	$53.81_{\pm 3.43}$	$52.93_{\pm 2.36}$	$63.45_{\pm 2.72}$
50%	MVP-R [30]	$\underline{59.10_{\pm 1.98}}$	$57.34_{\pm1.96}$	$54.81_{\pm0.21}$
	GACL (ours)	56.74 +1.14	58.29 +1.95	70.02+0.05

The performance at different blurry sample ratio with disjoint class ratio = 50% on CIFAR-100.

Thanks for Watching!

> Our paper is available at:

https://arxiv.org/abs/2403.15706

> Our codes are available at:

https://github.com/CHEN-YIZHU/GACL

