
Memory-Efficient LLM Training with Online Subspace Descent
Online Subspace Descent

● torch.svd is slow
● single-step backward() is fast
● P updates can be executed in parallel, no overhead
● Cost of SVD can’t be masked out

System Advantage
Why is it Faster?

Experiments
TLDR: works better than Galore

● 7B LLaMA model
● SS 256
● C4 dataset for 10K steps
● Perplexity Lower the better

Table 2: GLUE on 7B

References

Chen, Lizhang, et al. "Lion secretly solves constrained
optimization: As lyapunov predicts." arXiv preprint
arXiv:2310.05898 (2023).

Loshchilov, I. "Decoupled weight decay regularization." arXiv
preprint arXiv:1711.05101 (2017).

Chen, Xiangning, et al. "Symbolic discovery of optimization
algorithms." Advances in neural information processing
systems 36 (2024).

Anil, Rohan, et al. "Memory efficient adaptive optimization."
Advances in Neural Information Processing Systems 32
(2019).

Zhao, Jiawei, et al. "Galore: Memory-efficient llm training by
gradient low-rank projection." arXiv preprint arXiv:2403.03507
(2024).

Kaizhao Liang, Bo Liu, Lizhang Chen, Qiang Liu

Table 1: Perplexity and Wall Clock Time for 7B

Common Optimizers

A Natural Update Rule

TLDR:
● AdamW is good, but (memory) expensive
● A general online subspace framework for memory efficient optimization
● Subspaces can be updated arbitrarily – via hamiltonian view

W/O Projection

Pretraining LLaMA 1B SS 256, 10K steps, AdamW8bit

Hamiltonian + Descent

With Projection

