Memory-Efficient LLM Training with Online Subspace Descent

Kaizhao Liang, Bo Liu, Lizhang Chen, Qiang Liu

Online Subspace Descent

TLDR:

- AdamW is good, but (memory) expensive
- A general online subspace framework for memory efficient optimization
- Subspaces can be updated arbitrarily via hamiltonian view

Algorithm 1 Online Subspace Descent

- 1: Required: Optimizer OptimizerW, learning rate ϵ_t^W , weight decay λ^W for model weights W_t ; and {OptimizerP, ϵ_t^P , λ^P } for the projection matrix P_t . Proper initialization.
- 2: for iteration t do

Calculate gradient
$$G_t = \nabla L(W_t)$$
; Update model weights W_t by

$$\hat{\boldsymbol{\Delta}}_t, \ \hat{\boldsymbol{S}}_t) = \texttt{OptimizerW}(\boldsymbol{P}_t^\top \boldsymbol{G}_t, \hat{\boldsymbol{S}}_{t-1}), \quad \boldsymbol{W}_{t+1} = \boldsymbol{W}_t + \epsilon_t^W(\boldsymbol{P}_t \hat{\boldsymbol{\Delta}}_{t+1} - \lambda^W \boldsymbol{W}_t)$$

Calculate $G_t^P = \nabla L_{G_t}(P_t)$ for $L_{G_t}(\cdot)$ in Eq (6); Update the projection P_t by 4:

$$(\boldsymbol{\Delta}_t^P, \boldsymbol{S}_t^P) = \texttt{OptimizerP}(\boldsymbol{G}_t^P, \ \boldsymbol{S}_{t-1}^P), \qquad \boldsymbol{P}_{t+1} = \boldsymbol{P}_t + \epsilon_t^P(\boldsymbol{\Delta}_t^P - \lambda^P \boldsymbol{P}_t)$$

5: end for

6: Remark: We added weight decay as a common heuristic. We recommend using Adam for both optimizers, and set $\epsilon_t^P = \alpha \epsilon_t^W$ with a constant α (e.g., $\alpha = 5$), and $\lambda^W = \lambda^P$.²

Common Optimizers

$$\begin{array}{ll} \textit{Gradient Descent}: \quad \boldsymbol{W}_{t+1} = \boldsymbol{W}_t - \epsilon_t \boldsymbol{P}_t \boldsymbol{P}_t^\top \boldsymbol{G}_t, & \boldsymbol{G}_t = \nabla L(\boldsymbol{W}_t), \\ \textit{Momentum}: \quad \boldsymbol{W}_{t+1} = \boldsymbol{W}_t - \epsilon_t \boldsymbol{P}_t \hat{\boldsymbol{M}}_t, & \hat{\boldsymbol{M}}_t = (1-\beta) \boldsymbol{P}_t^\top \boldsymbol{G}_t + \beta \hat{\boldsymbol{M}}_{t-1}, \\ \textit{Lion-\mathcal{K}}: \quad \boldsymbol{W}_{t+1} = \boldsymbol{W}_t - \epsilon_t \boldsymbol{P}_t \nabla \mathcal{K}(\hat{\boldsymbol{N}}_t), & \hat{\boldsymbol{G}}_t = \boldsymbol{P}_t^\top \boldsymbol{G}_t \\ & \hat{\boldsymbol{N}}_t = (1-\beta_1) \hat{\boldsymbol{G}}_t + \beta_1 \hat{\boldsymbol{M}}_t, & \hat{\boldsymbol{M}}_t = (1-\beta_2) \hat{\boldsymbol{G}}_t + \beta_2 \hat{\boldsymbol{M}}_{t-1}, \\ \textit{Adam}: \quad \boldsymbol{W}_{t+1} = \boldsymbol{W}_t - \epsilon_t \boldsymbol{P}_t \frac{\hat{\boldsymbol{M}}_t}{\sqrt{\hat{\boldsymbol{V}}_t} + e}, & \hat{\boldsymbol{G}}_t = \boldsymbol{P}_t^\top \boldsymbol{G}_t, \\ & \hat{\boldsymbol{M}}_t = (1-\beta_{1t}) \hat{\boldsymbol{G}}_t + \beta_{1t} \hat{\boldsymbol{M}}_{t-1}, & \hat{\boldsymbol{V}}_t = (1-\beta_{2t}) \hat{\boldsymbol{G}}_t^{\odot 2} + \beta_{2t} \hat{\boldsymbol{V}}_{t-1}. \end{array}$$

A Natural Update Rule

$$\boldsymbol{W}_{t+1} = \boldsymbol{W}_t - \epsilon_t \boldsymbol{P}_t \boldsymbol{P}_t^\top \boldsymbol{G}_t, \quad \boldsymbol{G}_t = \nabla L(\boldsymbol{W}_t)$$

 $\boldsymbol{P}_{t+1} = \texttt{OptimizerP.step}(\boldsymbol{P}_t, \nabla_{\boldsymbol{P}} L_{\boldsymbol{G}_t}(\boldsymbol{P}_t))$
Hamiltonian + Descent

W/O Projection

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{W}_{t} &= \partial_{\boldsymbol{S}} H(\boldsymbol{W}_{t}, \boldsymbol{S}_{t}) - \Phi(\partial_{\boldsymbol{W}} H(\boldsymbol{W}_{t}, \boldsymbol{S}_{t})) \\ \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{S}_{t} &= -\partial_{\boldsymbol{W}} H(\boldsymbol{W}_{t}, \boldsymbol{S}_{t}) - \Psi(\partial_{\boldsymbol{S}} H(\boldsymbol{W}_{t}, \boldsymbol{S}_{t})), \\ \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{H}(\boldsymbol{W}_{t}, \boldsymbol{S}_{t}) &= \left\langle \partial_{\boldsymbol{W}} H_{t}, \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{W}_{t} \right\rangle + \left\langle \partial_{\boldsymbol{S}} H_{t}, \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{S}_{t} \right\rangle \\ &= \left\langle \partial_{\boldsymbol{W}} H_{t}, \partial_{\boldsymbol{S}} H_{t} - \Phi(\partial_{\boldsymbol{W}} H_{t}) \right\rangle + \left\langle \partial_{\boldsymbol{S}} H_{t}, -\partial_{\boldsymbol{W}} H_{t} - \Psi(\partial_{\boldsymbol{S}} H_{t}) \right\rangle \\ &= - \left\| \partial_{\boldsymbol{W}} H_{t} \right\|_{\Phi}^{2} - \left\| \partial_{\boldsymbol{S}} H_{t} \right\|_{\Psi}^{2} \leq 0, \end{aligned}$$

With Projection

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{W}_t &= \boldsymbol{P}_t \partial_{\hat{\boldsymbol{S}}} H(\boldsymbol{W}_t, \hat{\boldsymbol{S}}_t) - \Phi(\partial_{\boldsymbol{W}} H(\boldsymbol{W}_t, \hat{\boldsymbol{S}}_t)) \\ \frac{\mathrm{d}}{\mathrm{d}t} \hat{\boldsymbol{S}}_t &= -\boldsymbol{P}_t^\top \partial_{\boldsymbol{W}} H(\boldsymbol{W}_t, \hat{\boldsymbol{S}}_t) - \Psi(\partial_{\hat{\boldsymbol{S}}} H(\boldsymbol{W}_t, \hat{\boldsymbol{S}}_t)) \\ \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{P}_t &= \Gamma(\boldsymbol{P}_t, \nabla L(\boldsymbol{W}_t)), \end{aligned}$$

 $\frac{\mathrm{d}}{\mathrm{d}t}H(\boldsymbol{W}_{t},\boldsymbol{\hat{S}}_{t}) = -\left\|\partial_{\boldsymbol{W}}H_{t}\right\|_{\Phi}^{2} - \left\|\partial_{\boldsymbol{S}}H_{t}\right\|_{\Psi}^{2} + \left\langle\partial_{\boldsymbol{W}}H_{t},\boldsymbol{P}_{t}\partial_{\boldsymbol{\hat{S}}}H_{t}\right\rangle - \left\langle\partial_{\boldsymbol{\hat{S}}}H_{t},\boldsymbol{P}_{t}^{\top}\partial_{\boldsymbol{W}}H_{t}\right\rangle$ $= - \left\| \partial_{\boldsymbol{W}} H_t \right\|_{\Phi}^2 - \left\| \partial_{\boldsymbol{S}} H_t \right\|_{\Psi}^2 \le 0,$

Experiments

TLDR: works better than Galore

Method	Perplexity (↓)			
Tricentou .	60M	350M	1B	
8bit-AdamW (Full Rank)	32.75	30.43	29.40	
GaLore (Rank = 512) Ours (Rank = 512)	57.03 56.12	44.34 43.67	35.52 31.30	

Pretraining LLaMA 1B SS 256, 10K steps, AdamW8bit

- 7B LLaMA model
- SS 256
- C4 dataset for 10K steps
- Perplexity Lower the better

Method	Perplexity	Wall Clock Time (hours)		
Galore	51.21	9.7439		
Ours	43.72	7.1428		

Table 1: Perplexity and Wall Clock Time for 7B

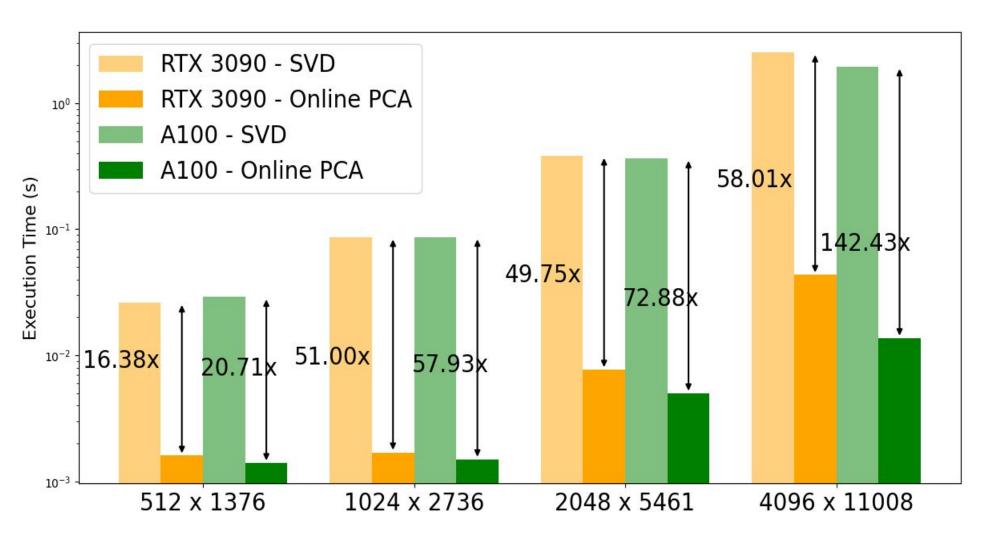


Method	MRPC	RTE	SST2	MNLI	QNLI	QQP	AVG
Galore	0.6838	0.5018	0.5183	0.3506	0.4946	0.3682	0.4862
Ours	0.6982	0.4901	0.5233	0.3654	0.5142	0.3795	0.4951

Table 2: GLUE on 7B

System Advantage

Why is it Faster?



- torch.svd is slow
- single-step backward() is fast
- P updates can be executed in parallel, no overhead
- Cost of SVD can't be masked out

References

Chen, Lizhang, et al. "Lion secretly solves constrained optimization: As lyapunov predicts." arXiv preprint arXiv:2310.05898 (2023).

Loshchilov, I. "Decoupled weight decay regularization." *arXiv* preprint arXiv:1711.05101 (2017).

Chen, Xiangning, et al. "Symbolic discovery of optimization algorithms." Advances in neural information processing systems 36 (2024).

Anil, Rohan, et al. "Memory efficient adaptive optimization." Advances in Neural Information Processing Systems 32 (2019).

Zhao, Jiawei, et al. "Galore: Memory-efficient llm training by gradient low-rank projection." arXiv preprint arXiv:2403.03507 (2024).

