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Background

 Membership Inference Attack (MIA) against ML Models

 The training samples will be memorized by ML models

 Infer whether a given sample is included for training

Member or Non-Member?

The training samples will be memorized. 

(Tend to have lower loss)

Whether a given data sample is used to training?
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Background

 Typical Applications

 Expose privacy via membership inference

E.g., recommendation system

 Detecting unauthorized content usage

E.g., medical data, copyrighted works

Whether unauthorized data is used for training?

Whether a user had used specific service? 
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Related Works: MIAs
Reference-free [1, 2]:

 Only based on the target sample probability (loss) of being generated by the target language model

 The simplest method: taking the probability (loss) of target sample as the metric for MIA

Reference-based [3, 4]:
 Using a reference model to calibrate the probability, then select the abnormal high value

[1] Mattern, Justus, et al. “Membership Inference Attacks against Language Models via Neighbourhood Comparison.” ACL’23

[2] Shi, Weijia, et al. “Detecting Pretraining Data from Large Language Models.” ICLR’24

[3] Mireshghallah, Fatemehsadat, et al. “Quantifying Privacy Risks of Masked Language Models Using Membership Inference Attacks.” EMNLP’22

[4] Mireshghallah, Fatemehsadat, et al. “An Empirical Analysis of Memorization in Fine-Tuned Autoregressive Language Models.” EMNLP’22
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Related Works: MIAs
Limitations of Existing MIAs

 Bad Performance on the Practical Scenario
 Only works on overfitting LLMs  can be easily avoided by regularization techniques

 Only works with high quality reference dataset  usually not accessible
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 Practical Difficulty Calibration (PDC)   Low quality of accessible reference datasets

 Probabilistic Variation Assessment (PVA)  Overfitting-free FT-LLMs

 Membership Inference Attack based on Self-calibrated Probabilistic Variation 

(SPV-MIA).

Method: Overview
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Method : Practical Difficulty Calibration

 Calibration via Self-Prompt Reference Model

 LLMs themselves may have the potential to generate high quality reference dataset!
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Method : Probabilistic Variation Assessment

Memorization rather than Overfitting

 Memorization is a more robust signal for performing MIA!

haveahigher probability of being generated than neighbour records in thedatadistribution [67]. This
principle can be shared with LLMs, as they can be considered generation models for texts. Thus, we
suggest designing amorepromising membership signal that can measure avalue for each text record
to identify whether this text is located on the local maximum in the sample distribution characterized
by ω. Thesecond partial derivative test isan approach in multivariable calculus commonly employed
to ascertain whether acritical point of a function isa local minimum, maximum, or saddle point [62].
For our objectiveof identifying maximum points, weneed to confirm if theHessian matrix isnegative
definite, meaning that all thedirectional second derivativesarenegative. However, considering that
member records may not strictly fall on maximum points, wesuggest relaxing thedecision ruleand
using specific statistical metrics of the distribution of the second-order directional derivative over
thedirection z to characterize theprobability variation. Thus, wedefine theprobabilistic variation
mentioned in Eq. 5 as theexpectation of thedirectional derivative:

pω(x ) := z z→Hp (x ) z , (8)

where Hp(·) is the hessian matrix of the probability function pω(·), then z→Hp (x ) z indicates
the second-order directional derivative of pω(·) with respect to the text record x in the direction
z . However, calculating the second-order derivative is computationally expensiveand may not be
feasible in LLMs. Thus, wepropose apractical approximation method to evaluate the probabilistic
variation. Specifically, we further approximate thederivativewith the symmetrical form [26]:

z→Hp(x )z →
pω(x + hz) + pω(x ↑ hz) ↑ 2pω(x )

h2
, (9)

where requires h ↓ 0, and z can beconsidered asasampled perturbation direction. Thus, x ± hz
can beconsidered asapair of symmetrical adjacent text records of x in thedatadistribution. Then
wecan reformulate Eq. 8 as followsby omitting coefficient h:

pω(x ) →
1

2N

N

n

pω x
+
n + pω x

↑
n ↑ pω(x ) . (10)

where x
±
n = x ± zn is a symmetrical text pair sampled by a paraphrasing model, which slightly

paraphrases the original text x in the high-dimension space. Note that the paraphrasing in the
sentence-level should be modest as Eq. 9 requires h ↓ 0, but large enough to ensure enough
precision to distinguish the probabilistic variation in Eq. 8. Based on theaforementioned discussions,
wedesigned two different paraphrasing models in theembedding domain and thesemantic domain,
respectively, to generate symmetrical paraphrased text embeddings or texts. For the embedding
domain, wefirst embed the target text, then randomly sample noise following Gaussian distribution,
and obtain a pair of symmetrical paraphrased texts by adding/subtracting noise. For the semantic
domain, werandomly mask out 20% tokens in each target text, then employ T5-base to predict the
masked tokens. Then, we compute the difference in the embeddings between the original tokens
and predicted tokens to search for tokens that are symmetrical to predicted tokens with respect
to the original tokens. We provide the detailed pseudo codes of both two paraphrasing models
in Appendix A.3. In subsequent experiments, we default to paraphrasing in the semantic domain.
Furthermore, we reformulate the neighbour attack and provide another explanation of its success
based on theprobabilistic variation metric with amore rigorous principle (refer to Appendix A.4).
Additionally, supplementary experiments demonstrate that our proposed paraphrasing model in the
embedding domain achieves considerable performance gains without relying on another MLM.

5 Experiments

5.1 Experimental Setup

Our experiments are conducted on four open-source LLMs: GPT-2 [54], GPT-J [69], Falcon-7B [3]
and LLaMA-7B [65], which are both fine-tuned over three dataset across multiple domains and
LLM use cases: Wikitext-103 [43], AG News [78] and XSum [49]. Each target LLM is fine-
tuned with the batch size of 16, and trained for 10 epochs. Each self-prompt reference model is
trained for 4 epochs. Weadopt LoRA [24] as the default Parameter-Efficient Fine-Tuning (PEFT)
technique. The learning rate is set to 0.0001. We adopt the AdamW optimizer [40] and early
stopping [71] to avoid overfitting and achieve generalization in LLMs, the PPL of each LLM-
dataset pair isprovided in Appendix A.5.4. Wecompare SPV-MIA with seven state-of-the-art MIAs
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 Dose SPV-MIA outperform the state-of-the-art MIAs?

Conclusions
 SPV-MIA consistently outperforms all baselines over all LLMs with different LLM 

architectures and fine-tuning datasets (AUC ~0.75  ~0.92)

 The privacy risk caused by MIAs on LLMs is positively correlated with the overall NLP 

performance of the LLM itself 

Experiment: Overall Performance

Full-training Fine-tuning
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