

Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems

Huaqing Zhang^{* 1,2}, Lesi Chen^{* 1,2}, Jing Xu¹, Jingzhao Zhang^{1,2,3} ¹IIIS, Tsinghua University ²Shanghai Qizhi Institute ³ Shanghai AI Lab **Equal Contributions*

Presenter: Huaqing Zhang

 \mathcal{X}^*_g : minimizers of $g(x)$

 f^* : minimal of $f(x)$ over \mathcal{X}^*_g

 g^* : minimal of $g(x)$

• **Our problem setup [Simple Bilevel Optimization]:**

min $x \in \mathcal{Z}$ $f(\mathbf{x})$ s.t. $\mathbf{x} \in \mathcal{X}^*_{g} = \arg\min_{\mathbf{x} \in \mathcal{X}}$ $z \in \mathcal{Z}$ $g(\mathbf{z})$ (1

- Minimize the upper-level objective over the solution set of a lower-level problem.
- $\mathcal Z$: feasible set; convex & compact with diameter D.
- f and g : upper-level and lower-level objective functions.
	- Assumption 1: f, g are convex and L_f , L_g -smooth functions.
	- Assumption 2: f, g are convex and C_f , C_g -Lipschitz continuous functions.
- **a hierarchical structure! •** many applications in machine learning
	- *Lifelong learning, lexicographic optimization…*
- Challenge: \mathcal{X}_{g}^{*} is not explicitly given.
	- Thus methods for constrained problems projected gradient method and Frank-Wolfe method are not applicable.

- **Our contribution:**
	- **Fundamental Difficulty of Simple BiO problems**: Prove the intractability of any zerorespecting first-order methods to find absolute optimal solutions.
	- **Near-Optimal Methods**: Propose a novel method with near-optimal rates for finding weak optimal solutions in both nonsmooth and smooth Simple BiO problems.

- Absolute optimal solution: $|f(\hat{x}) f^*| \le \epsilon_f$, $g(\hat{x}) g^* \le \epsilon_g$.
- Weak optimal solution: $f(\hat{x}) f^* \leq \epsilon_f$, $g(\hat{x}) g^* \leq \epsilon_g$.

Ⅱ. Hardness result: absolute optimal solution is not obtainable

• Our result: It is generally **intractable** for any *zero-respecting first-order method* to absolute optimal solutions.

> **Theorem 4.1.** For any first-order algorithm A satisfying Assumption $\overline{3.4}$ that runs for T iterations and any initial point x_0 , there exists a $(1,1)$ -smooth instance of Problem (1) such that the optimal solution \mathbf{x}^* satisfies $\|\mathbf{x}_0 - \mathbf{x}^*\|_2 \leq 1$ and $|f(\mathbf{x}_0) - f^*| \geq \frac{1}{48}$. For the iterates $\{\mathbf{x}_k\}_{k=0}^T$ generated by A, the following holds:

> > $f(\mathbf{x}_k) = f(\mathbf{x}_0), \quad \forall 1 \leq k \leq T.$

Theorem 4.2. For any first-order algorithm A satisfying Assumption $\overline{3.4}$ that runs for T iterations and any initial point x_0 , there exists a $(1,1)$ -Lipschitz instance of Problem (1) and some adversarial subgradients $\{\partial f(\mathbf{x}_k), \partial g(\mathbf{x}_k)\}_{k=0}^{T-1}$ such that the optimal solution \mathbf{x}^* satisfies $\|\mathbf{x}_0 - \mathbf{x}^*\|_2 \leq 1$ and $|f(\mathbf{x}_0) - f^*| \geq \frac{1}{4}$. For the iterates $\{\mathbf{x}_k\}_{k=0}^T$ generated by A, the following holds $f(\mathbf{x}_k) = f(\mathbf{x}_0), \quad \forall 1 \leq k \leq T.$

 $supp(\mathbf{x}_{t+1}) \subseteq supp(\mathbf{x}_0) \cup \left[\begin{array}{c} | \\ | \end{array} \right]$ 0≤s≤t $\text{supp}(\partial f(\mathbf{x}_{\scriptscriptstyle{S}}))\cup \text{supp}(\partial g(\pmb{x}_{\scriptscriptstyle{S}}))$ zero-respecting first-order method : A generates test points $\{x_t\}_{t\geq 0}$ with

Ⅱ. Hardness result: absolute optimal solution is not obtainable

- Proof idea: we need to construct a "hard case".
	- Key concept: "first-order zero-chain" (Definition 3.1)
		- Applying zero-respecting first-order method to a first-order zero-chain with zero initialization: only one component of x_k becomes non-zero in each iteration.

- Due to the intractability of obtaining absolute optimal solutions, we focus on proposing first-order methods for finding weak-optimal solutions: $f(\hat{x}) - f^* \leq \epsilon_f$, $g(\hat{x})$ $-g^* \leq \epsilon_g$.
- **Step1**: reformulate the original simple BiO problem to a functionally constrained problem.

$$
\min f(x), s. t. \tilde{g}(x) := g(x) - \hat{g}^* \le 0 \quad (2)
$$

where \widehat{g}^* is an approximation of the lower-level problem's optimal value g^*

• **Step2**: Reduce Problem (2) to finding the smallest root of an auxiliary function (3), whose function value is defined by a discrete minimax problem. Such reformulation is introduced in Nesterov's *Lectures on convex optimization*.

$$
\psi^*(t) := \min_{x \in \mathcal{Z}} \{ \psi(t, x) := \max\{ f(x) - t, \tilde{g}(x) \} \} \quad (3)
$$

• To solve the smallest root of $\psi^*(t)$, we adopt a **bisection procedure**, and uses a first-order subroutine M to estimate the function value of $\psi^*(t)$ for a given t.

Algorithm: Functionally Constrained Bilevel Optimizer (FC-BiO) Require: desired accuracy ϵ , total number of iterations T, initial bounds ℓ, u , and first-order subroutine M . Set $N = \left| \log_2 \frac{u-\ell}{\epsilon/2} \right|$ $\left| \frac{d^{2}-\tau}{\epsilon/2} \right|$, $K = T/N$. Set $\bar{\mathbf{x}} = \mathbf{x}_0$. **for** $k = 0, ..., N - 1$ **do** Set $t=\frac{\ell+u}{2}$ 2 . Solve with the subroutine $\left(\widehat{\mathbf{x}}_{(t)}, \widehat{\psi}^*(t) \right) = \mathcal{M}(\overline{\mathbf{x}}, t, K).$ Set $\overline{\mathbf{x}} = \widehat{\mathbf{x}}_{(t)}.$ **if** $\hat{\psi}^*(t) \geq \frac{\epsilon}{2}$ 2 **then** set $l = t$. **else** set $u = t$. **End for Return** $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{(u)}$ as the approximate solution.

first-order subroutine ℳ: min $x \in \mathcal{Z}$ $\psi(t,x) \coloneqq \max\{f(x) - t, \tilde{g}(x)\}$

Lipschitz objectives:

Subgradient Method

$$
\mathbf{x}_{k+1} = \Pi_Z (\mathbf{x}_k - \eta \partial_{\mathbf{x}} \psi(t, \mathbf{x}_k))
$$

smooth objectives:

Generalized Accelerated Gradient Method

$$
\mathbf{x}_{k+1} = \arg\min_{x \in \mathcal{Z}} \max \{ f(y_k) + \langle \nabla f(y_k), x - y_k \rangle + \frac{L}{2} ||x - y_k||_2^2 - t
$$

$$
\tilde{g}(y_k) + \langle \nabla \tilde{g}(y_k), x - y_k \rangle + \frac{L}{2} ||x - y_k||_2^2 \}
$$

 x_{k+1} can be further written in the form of a projection. (Proposition 5.2)

• Convergence rate of our FC-BiO method (Theorem 5.3, 5.4):

\n- Lipschitz case:\n
$$
\tilde{\sigma}\left(\max\left\{\frac{C_f^2}{\epsilon_f^2}, \frac{C_g^2}{\epsilon_g^2}\right\} D^2\right)
$$
\n
\n- Smooth case:\n
$$
\tilde{\sigma}\left(\max\left\{\sqrt{\frac{L_f}{\epsilon_f}}, \sqrt{\frac{L_g}{\epsilon_g}}\right\} D\right)
$$
\n Where *D* is the diameter of *Z* C_f, C_g, L_f, L_g are Lipschitz/smooth constants, and \tilde{O} hides logarithmic terms
\n

Figure 1: The performance of Algorithm $\boxed{1}$ compared with other methods in Problem $\boxed{11}$.

Figure 2: The performance of Algorithm $\boxed{1}$ compared with other methods in Problem $\boxed{12}$

$$
f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2
$$
, $g(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} - b||_2^2$,

minimum norm solution of Linear Regression. 400 datapoints. 700+ features.

$$
f(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-(A_i^{val})^{\top} \mathbf{x} \mathbf{b}_i^{val})),
$$

$$
g(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-(A_i^{tr})^{\top} \mathbf{x} \mathbf{b}_i^{tr})).
$$

Overparameterized Logistic Regression 10000 datapoints, 40000+ features.

