

Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems

Huaqing Zhang^{* 1,2}, Lesi Chen^{* 1,2}, Jing Xu¹, Jingzhao Zhang^{1,2,3} ¹IIIS, Tsinghua University ²Shanghai Qizhi Institute ³ Shanghai AI Lab **Equal Contributions*

Presenter: Huaqing Zhang

 \mathcal{X}_{q}^{*} : minimizers of g(x)

 f^* : minimal of f(x) over \mathcal{X}_a^*

 g^* : minimal of g(x)

• Our problem setup [Simple Bilevel Optimization]:

 $\min_{\mathbf{x}\in\mathcal{Z}} f(\mathbf{x}) \text{ s.t. } \mathbf{x} \in \mathcal{X}_g^* = \arg\min_{\mathbf{z}\in\mathcal{Z}} g(\mathbf{z}) \quad (1)$

- Minimize the upper-level objective over the solution set of a lower-level problem.
- \boldsymbol{z} : feasible set; convex & compact with diameter D.
- f and g: upper-level and lower-level objective functions.
 - Assumption 1: f, g are convex and L_f , L_g -smooth functions.
 - Assumption 2: f, g are convex and C_f , C_g -Lipschitz continuous functions.
- - Lifelong learning, lexicographic optimization...
- Challenge: \mathcal{X}_g^* is not explicitly given.
 - Thus methods for constrained problems projected gradient method and Frank-Wolfe method are not applicable.

- **Our contribution:** •
 - Fundamental Difficulty of Simple BiO problems: Prove the intractability of any zero-٠ respecting first-order methods to find absolute optimal solutions.
 - **Near-Optimal Methods**: Propose a novel method with near-optimal rates for finding ٠ weak optimal solutions in both nonsmooth and smooth Simple BiO problems.

- Absolute optimal solution: $|f(\hat{x}) f^*| \le \epsilon_f, g(\hat{x}) g^* \le \epsilon_g$. Weak optimal solution: $f(\hat{x}) f^* \le \epsilon_f, g(\hat{x}) g^* \le \epsilon_g$.

I. Hardness result: absolute optimal solution is not obtainable **M**

• Our result: It is generally **intractable** for any *zero-respecting first-order method* to absolute optimal solutions.

Theorem 4.1. For any first-order algorithm \mathcal{A} satisfying Assumption 3.4 that runs for T iterations and any initial point \mathbf{x}_0 , there exists a (1, 1)-smooth instance of Problem (1) such that the optimal solution \mathbf{x}^* satisfies $\|\mathbf{x}_0 - \mathbf{x}^*\|_2 \leq 1$ and $\|f(\mathbf{x}_0) - f^*\| \geq \frac{1}{48}$. For the iterates $\{\mathbf{x}_k\}_{k=0}^T$ generated by \mathcal{A} , the following holds:

 $f(\mathbf{x}_k) = f(\mathbf{x}_0), \quad \forall 1 \le k \le T.$

Theorem 4.2. For any first-order algorithm \mathcal{A} satisfying Assumption 3.4 that runs for T iterations and any initial point \mathbf{x}_0 , there exists a (1,1)-Lipschitz instance of Problem (1) and some adversarial subgradients $\{\partial f(\mathbf{x}_k), \partial g(\mathbf{x}_k)\}_{k=0}^{T-1}$ such that the optimal solution \mathbf{x}^* satisfies $\|\mathbf{x}_0 - \mathbf{x}^*\|_2 \leq 1$ and $|f(\mathbf{x}_0) - f^*| \geq \frac{1}{4}$. For the iterates $\{\mathbf{x}_k\}_{k=0}^{T}$ generated by \mathcal{A} , the following holds $f(\mathbf{x}_k) = f(\mathbf{x}_0), \quad \forall 1 < k < T.$

zero-respecting first-order method : \mathcal{A} generates test points $\{\mathbf{x}_t\}_{t\geq 0}$ with $\operatorname{supp}(\mathbf{x}_{t+1}) \subseteq \operatorname{supp}(\mathbf{x}_0) \cup \left(\bigcup_{0\leq s\leq t} \operatorname{supp}(\partial f(\mathbf{x}_s)) \cup \operatorname{supp}(\partial g(\mathbf{x}_s)))\right)$

II. Hardness result: absolute optimal solution is not obtainable 道道大学

- Proof idea: we need to construct a "hard case".
 - Key concept: "first-order zero-chain" (Definition 3.1)
 - Applying zero-respecting first-order method to a first-order zero-chain with zero initialization: only one component of x_k becomes non-zero in each iteration.

. Near-optimal method for finding weak-optimal solutions

- Due to the intractability of obtaining absolute optimal solutions, we focus on proposing first-order methods for finding weak-optimal solutions: *f*(*x̂*) − *f** ≤ *ϵ_f*, *g*(*x̂*) − *g** ≤ *ϵ_g*.
- Step1: reformulate the original simple BiO problem to a functionally constrained problem.

$$\min f(x), s.t. \tilde{g}(x) \coloneqq g(x) - \hat{g}^* \le 0 \quad (2)$$

where \hat{g}^* is an approximation of the lower-level problem's optimal value g^*

• **Step2**: Reduce Problem (2) to finding the smallest root of an auxiliary function (3), whose function value is defined by a discrete minimax problem. Such reformulation is introduced in Nesterov's *Lectures on convex optimization*.

$$\psi^*(t) \coloneqq \min_{x \in \mathcal{Z}} \{ \psi(t, x) \coloneqq \max\{ f(x) - t, \tilde{g}(x) \} \}$$
(3)

II. Near-optimal method for finding weak-optimal solutions

• To solve the smallest root of $\psi^*(t)$, we adopt a **bisection procedure**, and uses a **first-order subroutine** \mathcal{M} to estimate the function value of $\psi^*(t)$ for a given t.

Algorithm: Functionally Constrained Bilevel Optimizer (FC-BiO) **Require:** desired accuracy ϵ , total number of iterations T, initial bounds ℓ, u , and first-order subroutine \mathcal{M} . Set $N = \left[\log_2 \frac{u-\ell}{\epsilon/2} \right]$, K = T/N. Set $\bar{\mathbf{x}} = \mathbf{x}_0$. for $k = 0, \cdots, N - 1$ do Set $t = \frac{\ell + u}{2}$. Solve with the subroutine $(\hat{\mathbf{x}}_{(t)}, \hat{\psi}^*(t)) = \mathcal{M}(\bar{\mathbf{x}}, t, K)$. Set $\bar{\mathbf{x}} = \hat{\mathbf{x}}_{(t)}$. if $\hat{\psi}^*(t) \geq \frac{\epsilon}{2}$ then set $\ell = t$. else set u = t. End for **Return** $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{(u)}$ as the approximate solution.

. Near-optimal method for finding weak-optimal solutions

first-order subroutine \mathcal{M} : $\min_{x \in \mathbb{Z}} \{ \psi(t, x) \coloneqq \max\{f(x) - t, \tilde{g}(x)\} \}$

Lipschitz objectives:

Subgradient Method

$$\mathbf{x}_{k+1} = \Pi_{\mathcal{Z}} \big(\mathbf{x}_k - \eta \partial_{\mathbf{x}} \psi(t, \mathbf{x}_k) \big)$$

smooth objectives:

Generalized Accelerated Gradient Method

$$\begin{aligned} \mathbf{x}_{k+1} &= \arg\min_{x\in\mathcal{Z}} \max \left\{ f(y_k) + \langle \nabla f(y_k), x - y_k \rangle + \frac{L}{2} \|x - y_k\|_2^2 - t \\ \tilde{g}(y_k) + \langle \nabla \tilde{g}(y_k), x - y_k \rangle + \frac{L}{2} \|x - y_k\|_2^2 \right\} \end{aligned}$$

 x_{k+1} can be further written in the form of a projection. (Proposition 5.2)

III. Near-optimal method for finding weak-optimal solutions

• Convergence rate of our FC-BiO method (Theorem 5.3, 5.4):

• Lipschitz case:

$$\tilde{O}\left(\max\left\{\frac{C_f^2}{\epsilon_f^2}, \frac{C_g^2}{\epsilon_g^2}\right\}D^2\right)$$
• Smooth case:

$$\tilde{O}\left(\max\left\{\sqrt{\frac{L_f}{\epsilon_f}}, \sqrt{\frac{L_g}{\epsilon_g}}\right\}D\right)$$
Where *D* is the diameter of *Z C_f*, *C_g*, *L_f*, *L_g* are Lipschitz/smooth constants, and \tilde{O} hides logarithmic terms

Figure 1: The performance of Algorithm 1 compared with other methods in Problem (11).

Figure 2: The performance of Algorithm 1 compared with other methods in Problem (12)

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2, \quad g(\mathbf{x}) = \frac{1}{2} \|A\mathbf{x} - b\|_2^2,$$

minimum norm solution of Linear Regression. 400 datapoints. 700+ features.

$$f(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-(A_i^{val})^{\top} \mathbf{x} \mathbf{b}_i^{val})),$$
$$g(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + \exp(-(A_i^{tr})^{\top} \mathbf{x} \mathbf{b}_i^{tr})).$$

Overparameterized Logistic Regression 10000 datapoints, 40000+ features.

