

KU LEUVEN

Training Procedure

Credal Deep Ensembles for Uncertainty Quantification

Kaizheng Wang^{1,4}, Fabio Cuzzolin³, Shireen Kudukkil Manchingal³, Keivan Shariatmadar^{2,4}, David Moens^{2,4}, Hans Hallez¹ ¹KU Leuven, Department of Computer Science, DistriNet ²KU Leuven, Department of Mechanical Engineering, LMSD ³Oxford Brookes University, Visual Artificial Intelligence Laboratory ⁴Flanders Make@KU Leuven

CreNet Loss Design

 $\left| \mathcal{L}_{\text{cre}} = \frac{1}{N} \sum_{n=1}^{N} \text{CE}(\boldsymbol{q}_{U_n}, \boldsymbol{t}_n) + \underset{w \in S}{\text{maximize}} \frac{1}{N} \sum_{n=1}^{N} w_n \text{CE}(\boldsymbol{q}_{L_n}, \boldsymbol{t}_n) \right|$

CE: cross-entropy loss.

Vanilla Component

Take the training distribution at face value. Encourage "optimistic/upper-bound" predictions.

DRO Component

Weigh training outliers to simulate future differences in data distribution at test time.

Encourage "pessimistic/lower-bound" predictions.

Input: Training dataset $\mathbb{D} = \{ \boldsymbol{x}_n, \boldsymbol{t}_n \}_{n=1}^N$; Portion of samples per batch $\delta \in [0.5, 1)$; Batch size η

Class Prediction & Uncertainty Quantification

Maximax and Maximin Criteria for Class Prediction

 $\hat{i}_{\min} \coloneqq \arg\max q_{L_i}^*; \hat{i}_{\max} \coloneqq \arg\max q_{U_i}^*$ Output the class indices with the highest lower and upper reachable probability, respectively.

 $q_{L_{i}}^{*} = \max\left(q_{L_{i}}, 1 - \sum_{j \neq i} q_{U_{i}}\right); q_{U_{i}}^{*} = \min\left(q_{U_{i}}, 1 - \sum_{j \neq i} q_{L_{i}}\right)$ Generalized Shannon Entropy for Uncertainty Quantification $\overline{H}(\mathbb{Q}) = \text{maximize} \sum_{i}^{C} - q_i \log_2 q_i$ s.t. $\sum_{i}^{C} q_i = 1$; $q_{L_i}^* \le q_i \le q_{U_i}^*$

For $\underline{H}(\mathbb{Q})$, replace maximize by minimize.

Aleatoric uncertainty (AU) and epistemic uncertainty (EU) are measured by $\underline{H}(\mathbb{Q})$ and $\overline{H}(\mathbb{Q}) - \underline{H}(\mathbb{Q})$, respectively.

Experimental Validation

Table 1. OOD detection performance (%, \uparrow) using EU between on ResNet50 architecture.

Figure 1. OOD detection (CIFAR10 vs CIFAR10-C) over increased corruption intensity on distinct architecture.

1000001000000000000000000000000000000

	CIFAR10		CIFAR100		ImageNet	
	ACC (%)	ECE	ACC (%)	ECE	ACC (%)	ECE
DEs	$93.32_{\pm 0.13}$	$0.013_{\pm 0.001}$	73.83 _{±1.97}	$0.039_{\pm 0.003}$	77.92 _{±0.02}	$0.242_{\pm 0.001}$
$C_{ro}DE_{a} \frac{\hat{i}_{min}}{\hat{i}_{min}}$	93.73 _{±0.11}	$0.009_{\pm 0.002}$	79.54 $_{\pm 0.21}$	$0.027_{\pm 0.002}$	78.41 $_{\pm 0.02}$	$0.593_{\pm 0.001}$
\hat{i}_{max}	93.74 $_{\pm 0.11}$	$0.011_{\pm 0.002}$	79.65 _{±0.19}	$0.027_{\pm 0.002}$	78.51 \pm 0.02	$0.169_{\pm 0.000}$

• EU quantification quality robust against different measures like generalized Hartley measure • Enhanced uncertainty quantification compared to deep ensembles that applied the DRO strategy or 'product of experts' strategy and several Bayesian neural network baselines Superior performance in a case study of active learning

Marginal increase in inference complexity compared to deep ensembles

Additional Findings

Uncertainty quantification performance robust against training hyper parameter δ Improved total uncertainty estimation quality

