
CIFAR10 (ID) CIFAR100 (ID) ImageNet (ID)
SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD) ImageNet-O (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
DEs 89.58±".$% 92.29±&."" 86.87±".'" 83.02±".&( 73.83±&.$) 84.96±&.'* 78.80±".'" 74.68±".') 65.03±".*% 62.77±".%+

CreDEs 𝟗𝟔. 𝟓𝟓±𝟎.𝟐𝟓 𝟗𝟖. 𝟏𝟕±𝟎.𝟏𝟕 𝟖𝟖. 𝟏𝟎±𝟎.𝟐𝟔 𝟖𝟕. 𝟖𝟓±𝟎.𝟑𝟓 𝟕𝟖. 𝟓𝟓±𝟏.𝟏𝟓 𝟖𝟔. 𝟓𝟕±𝟎.𝟔𝟓 𝟖𝟐. 𝟓𝟒±𝟎.𝟐𝟔 𝟕𝟕. 𝟔𝟎±𝟎.𝟒𝟒 𝟔𝟕. 𝟖𝟐±𝟎.𝟎𝟔 𝟔𝟐. 𝟖𝟎±𝟎.𝟏𝟐
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Credal Set Prediction via Probability Intervals
§ Generating Probability Intervals via Interval SoftMax

𝑞!! =
exp 𝑎!!
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; 𝑞%! =
exp 𝑎%!
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Probability interval vector 𝒒! , 𝒒% ≔ 𝑞!! , 𝑞%! $
& satisfies:

𝑞!! ≤ 𝑞%! ∀𝑖 = 1,… , 𝐶; ∑$&𝑞!! ≤ 1 ≤ ∑$&𝑞%! .
§ Defining a Non-empty Credal Set ℚ

ℚ = 𝒒 𝑞$ ∈ 𝑞!! , 𝑞%! ∀ 𝑖; ∑$
& 𝑞$ = 1
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§ Vanilla Training Strategy 

minimize
𝜽∈)

1
𝑁
:

*

+
ℒ 𝒙*, 𝒕* , 𝜽

𝒙*, 𝒕* *
+: training set; 𝜽 trainable model parameter in the 

space Θ; ℒ @,@ : an arbitrary loss function. 
§ Distributionally Robust Optimization (DRO) 

using Adversarially Reweighted Learning

minimize
𝜽∈)

maximize
𝒘∈𝕊

1
𝑁
:

*

+
𝑤*ℒ 𝒙*, 𝒕* , 𝜽

A minimax game between a learner and an adversary. 
𝑤*: an adversarial assignment of weights, collected in 𝒘; 
the set 𝕊 of weight vectors varies across implementations.

§ CreNet Loss Design 

ℒcre =
1
𝑁
:

*

+
CE 𝒒%# , 𝒕* +maximize

𝒘∈𝕊

1
𝑁
:

*

+
𝑤*CE 𝒒!# , 𝒕*

CE: cross-entropy loss.

Vanilla Component 
• Take the training distribution at face value.
• Encourage “optimistic/upper-bound” predictions.

DRO Component 
• Weigh training outliers to simulate future differences in data 

distribution at test time. 
• Encourage “pessimistic/lower-bound” predictions.

§ CreNet Loss Implementation 

were theoretically set to 1, all samples would be selected for backpropagation, implying that wn=1
for any n in Eq. (10). Consequently, the loss in Eq. (10) would be the sum of the vanilla component
on qU and the vanilla component on qL. Empirically, we observed that this leads to a collapse of the
upper and lower probability bounds to single values.

The implementation of the CreNet training procedure is shown in Algorithm 1.
Algorithm 1 CreNet Training Procedure

Input: Training dataset D={xn, tn}Nn=1; Portion of samples per batch ω→ [0.5, 1); Batch size ε

while enable training do
1. Compute CE(qUn , tn) and CE(qLn , tn) for each sample
2. Sort the sample indices (m1, ...,mω) in descending order of CE(qLn , tn)
3. Define εε = ↑ωε↓
4. Minimize LCreNet=

1
ω

∑
ω

n=1 CE(qUn , tn)+
1
ε·ω

∑
ωω

j=1 CE(qLmj
, tmj )

end while

2.3 Class Prediction and Uncertainty Quantification

Class Prediction For the class prediction we employ the ‘maximin’ and ‘maximax’ criteria [66]:

îmin :=argmax
i

q
→
Li
; îmax :=argmax

i

q
→
Ui
, (11)

which output (respectively) the class indices with the highest lower and upper reachable probability
(q→

Li
and q

→
Ui

) within the same credal set induced by the predicted lower and upper probabilities
qLi , qUi . Figure 3 illustrates how the lower and upper probabilities qLi , qUi that determine the credal
set Q may differ from the probabilities q→

Li
and q

→
Ui

actually reachable for each class within Q. The
reachable lower and upper probabilities for class i can be easily obtained as follows [17]:

q
→
Ui
=min

(
qUi , 1↔

∑

j ↑=i

qLj

)
, q

→
Li
=max

(
qLi , 1↔

∑

j ↑=i

qUj

)
. (12)

Uncertainty Quantification Given a credal set prediction, upper and lower entropies generalizing
Shannon’s entropy, denoted as H(Q) and H(Q), can be defined which may serve as measures for
TU and AU, respectively [3, 36].

Computing H(Q) boils down to solving the following optimization problem:

H(Q)=maximize
∑C

i=1
↔qi ·log2 qi s.t. q

→
Li

↗qi ↗ q
→
Ui
↘i and

∑C

i=1
qi=1. (13)

This seeks the highest entropy value of a probability distribution within the predicted credal set Q.
H(Q), for which maximize is replaced by minimize, searches for the minimal such entropy. Such
optimization problems can be addressed using a standard solver, e.g., the SciPy optimization package
[73]. Epistemic uncertainty can then be quantified as H(Q)↔H(Q) [36].

Computational Complexity Reduction To reduce the computational complexity of Eq. (13) for
a large value of C (e.g., C = 1000), we propose an original approach called Probability Interval
Dimension Reduction (PIDR) in Algorithm 2. This method first identifies the K↔1 classes with the
highest lower probability values, then merges the remaining elements into a single class with the
associated upper and lower probability calculated using Eq. (12). Consequently, the dimension of the
probability interval is reduced from C to K.

2.4 Credal Deep Ensembles

Inspired by conventional DEs [43], the final step of our approach is to introduce Credal Deep
Ensembles (CreDEs). CreDEs aggregate M individually trained CreNets and predict the aggregated
probability intervals, denoted as [q̃→

L
, q̃→

U
], as follows:

q̃→
L
=

1

M

∑M

m=1
q→
Lm

, q̃→
U
=

1

M

∑M

m=1
q→
Um

, (14)

where [q→
Lm

, q→
Um

] is the set of reachable probability intervals predicted by the m-th CreNet. Eq. (20)
in Appendix D proves that [q̃→

L
, q̃→

U
] satisfies the convexity condition in Eq. (2) for constructing a
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Experimental Validation

CIFAR10 (ID) [VGG16] CIFAR10 (ID) [ViT Base]
SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
DEs 82.19±".+' 87.52±".+& 78.58±".&* 73.28±".'% 77.71±&.$) 88.73±".%' 82.27±".)$ 78.85±".+&

CreDEs 𝟖𝟕. 𝟔𝟖±𝟎.𝟕𝟑𝟗𝟑. 𝟒𝟕±𝟎.𝟔𝟕𝟖𝟐. 𝟓𝟔±𝟎.𝟐𝟖𝟖𝟎. 𝟖𝟏±𝟎.𝟓𝟐𝟖𝟖. 𝟓𝟕±𝟐.𝟎𝟖𝟗𝟑. 𝟐𝟒±𝟏.𝟐𝟓𝟖𝟐. 𝟓𝟒±𝟎.𝟐𝟔𝟖𝟕. 𝟖𝟒±𝟎.𝟓𝟐

Table 1. OOD detection performance (%, ↑) using EU between on ResNet50 architecture.

Table 2. OOD detection performance (%, ↑) using EU between on different architecture.

! ℚ − !(ℚ)(Ours) ! *+ − !, * 	(Baseline)
VGG16 ViT BaseResNet50 VGG16 ViT BaseResNet50

Figure 1. OOD detection (CIFAR10 vs CIFAR10-C) over increased corruption intensity on distinct architecture.

Additional Findings
CIFAR10 CIFAR100 ImageNet 

ACC (%) ECE ACC (%) ECE ACC (%) ECE
DEs 93.32±".&% 0.013±".""& 73.83±&.$) 0.039±".""% 77.92±"."' 0.242±".""&

CreDEs
̂𝚤min 𝟗𝟑. 𝟕𝟑±𝟎.𝟏𝟏𝟎. 𝟎𝟎𝟗±𝟎.𝟎𝟎𝟐 𝟕𝟗. 𝟓𝟒±𝟎.𝟐𝟏 𝟎. 𝟎𝟐𝟕±𝟎.𝟎𝟎𝟐 𝟕𝟖. 𝟒𝟏±𝟎.𝟎𝟐 0.593±".""&
̂𝚤max𝟗𝟑. 𝟕𝟒±𝟎.𝟏𝟏𝟎. 𝟎𝟏𝟏±𝟎.𝟎𝟎𝟐 𝟕𝟗. 𝟔𝟓±𝟎.𝟏𝟗 𝟎. 𝟎𝟐𝟕±𝟎.𝟎𝟎𝟐 𝟕𝟖. 𝟓𝟏±𝟎.𝟎𝟐 𝟎. 𝟏𝟔𝟗±𝟎.𝟎𝟎𝟎

Table 3. Test ACC (%, ↑) and ECE (↓) on ResNet50 architecture.

§ Uncertainty quantification 
performance robust against 
training hyper parameter 𝛿

§ Improved total uncertainty 
estimation quality

§ EU quantification quality robust against different measures like generalized Hartley measure
§ Enhanced uncertainty quantification compared to deep ensembles that applied the DRO strategy or 

‘product of experts’ strategy and several Bayesian neural network baselines
§ Superior performance in a case study of active learning
§ Marginal increase in inference complexity compared to deep ensembles 

Class Prediction & Uncertainty Quantification
§ Maximax and Maximin Criteria for Class Prediction

̂𝚤min ≔ argmax
$

𝑞!!
∗ ; ̂𝚤max ≔ argmax

$
𝑞%!
∗

Output the class indices with the highest lower and upper reachable probability, respectively.

𝑞!!
∗ = max 𝑞!! , 1 − ∑/#$𝑞%$ ; 𝑞%!

∗ = min 𝑞%! , 1 − ∑/#$𝑞!$
§ Generalized Shannon Entropy for Uncertainty Quantification

𝐻 ℚ = maximize∑$& − 𝑞$ log0 𝑞$ s.t. ∑$&𝑞$ = 1; 𝑞!!
∗ ≤ 𝑞$ ≤ 𝑞%!

∗

For 𝐻 ℚ , replace maximize by minimize. 

Aleatoric uncertainty (AU) and epistemic uncertainty (EU) are measured by 𝐻 ℚ and 𝐻 ℚ − 𝐻 ℚ , respectively.

Training Procedure


