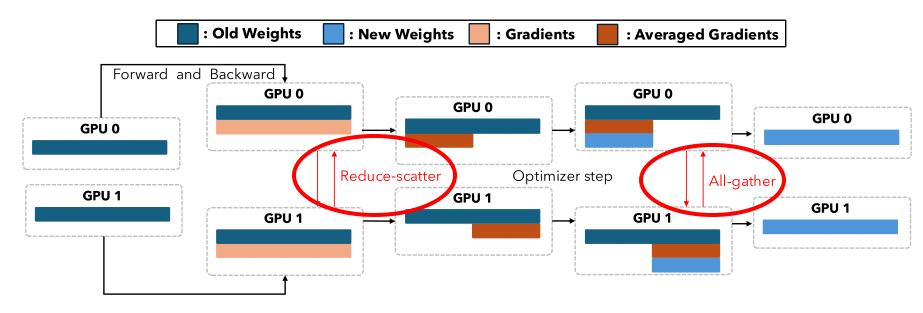


SDP4Bit: Toward 4-bit Communication Quantization in Sharded Data Parallelism for LLM Training

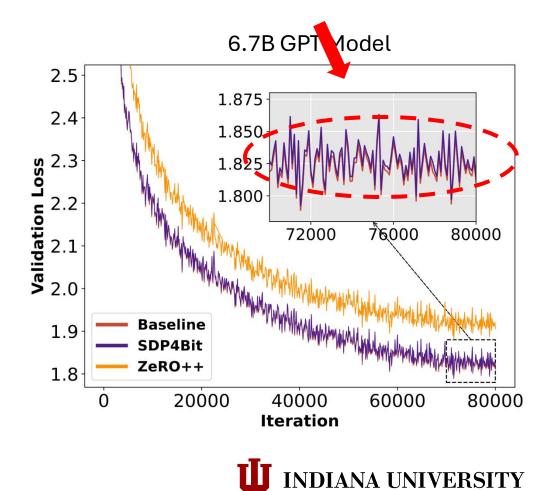
Jinda Jia* , Cong Xie*, Hanlin Lu, Daoce Wang, Hao Feng, Chenmgming Zhang, Baixi Sun, Haibin Lin, Zhi Zhang, Xin Liu, Dingwen Tao[†]



* Equaly contributed first authors [†] Correspoding author

Communication Overhead is Large During Training

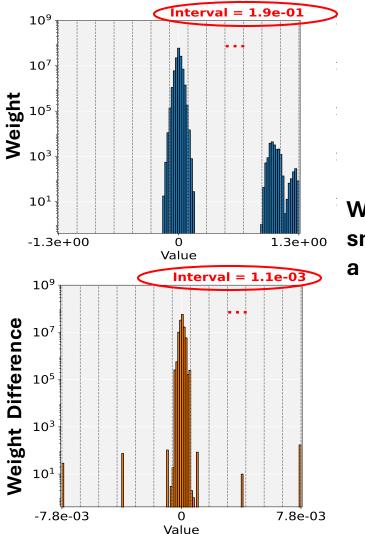
Communication is slow, especially internode communication.


Communication pattern for Shared Data Parallelism

What SDP4Bit Can Achieve?

Almost no accuracy loss

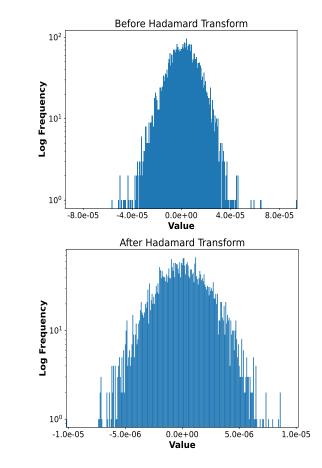
Weight Communication: 16 bits → 4 bits


Gradient Communication :

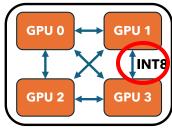
Intra Node: 32 bits \rightarrow 8 bits (can be hidden) Inter Node: 32 bits \rightarrow 4 bits

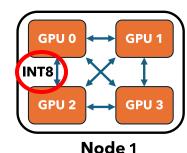
4x reduction for weight8x reduction for gradient

Weight Compression Strategy

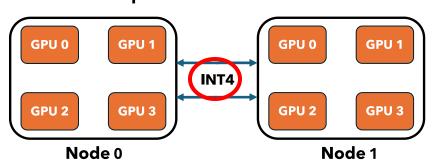

Weight Differences usually have a smaller range, so that can achieve a much lower compression error.

Use weight difference communication pattern, and quantize weight differences into 4 bits.

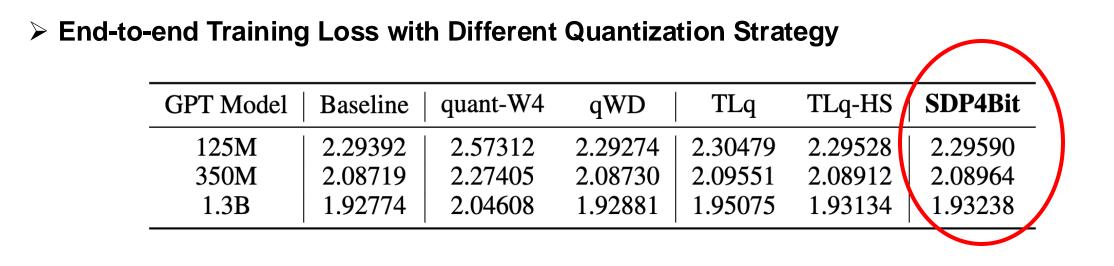

Gradient Compression Strategy



Using Hadamard Transformation to alleviate gradient outliers. (zero-overhead integration) INDIANA UNIVERSITY


Step1: Intra-node all-to-all

Node 0


Step2: Inter-node all-to-all

8-bit quantization for Intra-node 4-bit for Inter-node

Final loss is close to the baseline.

Experiments

E2E Training Throughput with Different Models

	4xA100, 16 nodes (Slingshot 10)			8xH800, 16 nodes (InfiniBand)		
Model Size	Baseline TFLOPs	SDP4Bit TFLOPs	Speedup	Baseline TFLOPs	SDP4Bit TFLOPs	Speedup
1.3B	24.1 ±0.03	57.6 ± 0.03	2.39×	69.1 ±0.96	106.0 ± 2.66	1.53×
2.7B	24.0 ± 0.00	58.4 ± 0.07	$2.43 \times$	71.9 ± 0.56	116.9 ± 0.98	$1.63 \times$
6.7B	10.8 ± 0.00	37.1 ± 0.00	$3.44 \times$	$26.2\pm\!0.33$	77.9 ± 2.43	$2.97 \times$
13 B	9.7 ±0.04	$26.0\pm\!0.03$	$2.68 \times$	13.9 ± 0.17	53.5 ± 1.36	$3.85 \times$
18 B	10.2 ± 0.00	29.8 ± 0.04	$2.92 \times$	14.5 ± 0.07	59.2 ± 1.37	$4.08 \times$

Up to 4.08× Throughput Improvement.

Looking forward to see you on Dec 11

SDP4Bit: Toward 4-bit Communication Quantization in Sharded Data Parallelism for LLM Training

Poster Session 2 Wed 11 Dec 4:30 p.m. PST — 7:30 p.m. PST

