

Polynomial Regret and Mismatched Sampling Paradox

Raymond Zhang name.surname@centralesupelec.fr Richard Combes November 12, 2024

Laboratoire des signaux et systèmes, CentraleSupélec, CNRS, Université Paris-Saclay

1. [Combinatorial Bandits](#page-2-0)

2. [Thompson Sampling for Combinatorial Bandits](#page-9-0)

[Combinatorial Bandits](#page-2-0)

At time
$$
t = 1, 2, ..., T
$$
,

1. A decision maker selects a decision $A(t) \in \mathcal{A}$ where $\mathcal{A} \subset \{0, 1\}^d$

1. A decision maker selects a decision $A(t) \in \mathcal{A}$ where $\mathcal{A} \subset \{0, 1\}^d$

2. The environment then draws a random vector $X(t) \in \mathbb{R}^d$ where the $(X(t))_{t\in[T]}$ are i.i.d. with $\mathbb{E}[X(t)] := \mu^*$.

We also assume that the entries of X are subgaussian of parameter **We also assume that the entries of X are subgared by all the entries of X are subgared by all the substance of X** 2

1. A decision maker selects a decision $A(t) \in \mathcal{A}$ where $\mathcal{A} \subset \{0, 1\}^d$

2. The environment then draws a random vector $X(t) \in \mathbb{R}^d$ where the $(X(t))_{t\in[T]}$ are i.i.d. with $\mathbb{E}[X(t)] := \mu^*$.

We also assume that the entries of X are subgaussian of parameter **We also assume that the entries of X are subgared by all the entries of X are subgared by all the substance of X** 2

3. The learner then observes $Y(t) = A(t) \odot X(t)$ (Semi bandit feedback).

1. A decision maker selects a decision $A(t) \in \mathcal{A}$ where $\mathcal{A} \subset \{0, 1\}^d$

2. The environment then draws a random vector $X(t) \in \mathbb{R}^d$ where the $(X(t))_{t\in[T]}$ are i.i.d. with $\mathbb{E}[X(t)] := \mu^*$.

We also assume that the entries of X are subgaussian of parameter **We also assume that the entries of X are subgared by all the entries of X are subgared by all the substance of X** 2

3. The learner then observes $Y(t) = A(t) \odot X(t)$ (Semi bandit feedback).

4. Receives a Linear reward $r(t) = A(t)^{\top} X(t)$

Minimize :

$$
R(\mathcal{T}, \mu^*) := \mathcal{T} \max_{A \in \mathcal{A}} \left\{ \mathbb{E} \left[A^\top X(t) \right] \right\} - \sum_{t=1}^T \mathbb{E} \left[A(t)^\top X(t) \right]
$$

=
$$
\mathcal{T} \max_{A \in \mathcal{A}} \left\{ A^\top \mu^* \right\} - \sum_{t=1}^T \mathbb{E} \left[A(t)^\top X(t) \right].
$$

[Thompson Sampling for](#page-9-0) [Combinatorial Bandits](#page-9-0)

Given a prior on the parameter $\mu^*:\pi(\mu)$

At time $t = 1, 2, ..., T$:

1. Thompson Sampling draws $\theta(t)$ from the posterior distribution $\pi_{t-1}(t) := \pi(\mu|X(t-1), ..., X(0), A(t-1), ..., A(0))$ and selects :

 $A(t) \in \arg \max_{A \in \mathcal{A}} \{A^\top \theta(t)\}$

2. The environment then draws a random vector $X(t) \in \mathbb{R}^d$. The learner then observes :

 $Y(t) = A(t) \odot X(t)$

3. Receives a Linear reward $r(t) = A(t)^{\top} X(t)$

¹Wang and Chen [2020.](#page-15-0)

4. Update the posterior $\pi_t(\mu)$ using the Bayes rule.

If we suppose $X(t)$ to be Gaussian with variance $\sigma^2 I_d$ and mean μ^\star . It is reasonable to give ourselves a prior $\pi_{0}(\mu)$ uniform on \mathbb{R}^{d} and a Gaussian likelihood with variance σ^2 .

The posterior can therefore be written :

$$
\forall i \in [d], \theta_i(t) \sim \mathcal{N}\left(\frac{\sum_{s}^{t} Y_i(s)}{N_i(t)}, \frac{\sigma^2}{N_i(t)}\right)
$$
(1)

With $N_i(t) := \sum_{s}^{t} A_i(s)$ the number of time item *i* has been selected.

We propose to draw :

$$
\forall i \in [d], \theta_i(t) \sim \mathcal{N}\left(\frac{\sum_{s}^{t} Y_i(s)}{N_i(t)}, \frac{2g(t)\sigma^2}{N_i(t)}\right)
$$
 (2)

With :

$$
g(t) := \frac{2 \left(\ln t + (m+2) \ln \ln t + \frac{m}{2} \ln (1+e) \right)}{\ln(t)}
$$

With $m := \max_{A \in \mathcal{A}} \|A\|_1$. Note that $g(t) \rightarrow 2$

²Zhang and Combes [2024.](#page-15-1)

Upper bound of algorithm the first version [\(1\)](#page-11-0) for subgaussian rewards :

$$
O\left(\frac{\sigma^2 d(\ln m)^2}{\Delta_{\min}}\ln T + \frac{dm^3}{\Delta_{\min}^2} + m\left(\sigma \frac{m^2+1}{\Delta_{\min}}\right)^{2+4m}\right).
$$

Upper bound of algorithm the second version [\(2\)](#page-12-0) for subgaussian rewards :

$$
O\left(\frac{\sigma^2d\ln m}{\Delta_{\min}}\ln T + \frac{\sigma^2d^2m\ln m}{\Delta_{\min}}\ln\ln T + P\left(m,d,\frac{1}{\Delta_{\min}},\Delta_{\max},\sigma\right)\right)
$$

The degrees of the polynomial in $m, d, 1/\Delta_{\min}, \sigma$ are respectively 30, 10, 20, 20.

In our paper 3 we proved a lower bound for the regret of Thompson Sampling for Bernoulli rewards and Bernoulli likelihood and Beta prior:

$$
R(T, \theta) \geqslant \frac{\Delta_{\min}}{4p_{\Delta_{\min}}} (1 - (1 - p_{\Delta_{\min}})^{T-1})
$$
\nWith : $p_{\Delta_{\min}} = \exp \left\{-\frac{2m}{9} \left(\frac{1}{2} - \left(\frac{\Delta_{\min}}{m} + \frac{1}{\sqrt{m}}\right)\right)^2\right\}$

With :
$$
p_{\Delta_{\min}} = \exp \left\{-\frac{2m}{9} \left(\frac{1}{2} - \left(\frac{\Delta_{\min}}{m} + \frac{1}{\sqrt{m}}\right)\right)^2\right\}
$$

³Zhang and Combes [2021.](#page-15-2)

Bibliography

[References](#page-15-3)

- Ħ Wang, Siwei and Wei Chen (Mar. 2020). **"Thompson Sampling for Combinatorial Semi-Bandits".** In: *arXiv:1803.04623 [cs]*. arXiv: 1803.04623. URL: <http://arxiv.org/abs/1803.04623> (visited on 05/26/2020).
- F Zhang, Raymond and Richard Combes (Oct. 2021). **"On the Suboptimality of Thompson Sampling in High Dimensions".**

In: *arXiv:2102.05502 [cs, stat]*. URL: <http://arxiv.org/abs/2102.05502> (visited on 04/19/2023).

— (Oct. 2024). *Thompson Sampling For Combinatorial Bandits: Polynomial Regret and Mismatched Sampling Paradox***.** arXiv:2410.05441. URL: <http://arxiv.org/abs/2410.05441> (visited on 10/17/2024).