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Combinatorial Bandits



Combinatorial Bandits model

At time t “ 1,2, ...,T ,

1. A decision maker selects a decision Aptq P A where A Ă t0,1ud

2. The environment then draws a random vector X ptq P Rd where
the pX ptqqtPrT s are i.i.d. with ErX ptqs :“ µ‹.

We also assume that the entries of X are subgaussian of parameter
σ, @λ P Rd ,E

“

exppλJpX ptq ´ µ‹qq
‰

ă exp
´

||λ||
2σ2

2

¯

3. The learner then observes Y ptq “ Aptq d X ptq (Semi bandit
feedback).

4. Receives a Linear reward rptq “ AptqJX ptq
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Goal

Minimize :

RpT , µ˚q :“ T max
APA

!

E
“

AJX ptq
‰

)

´

T
ÿ

t“1

E
“

AptqJX ptq
‰

“ T max
APA

!

AJµ‹
)

´

T
ÿ

t“1

E
“

AptqJX ptq
‰

.
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Thompson Sampling for
Combinatorial Bandits



Thompson Sampling1

Given a prior on the parameter µ˚ : πpµq

At time t “ 1,2, ...,T :

1. Thompson Sampling draws θptq from the posterior distribution
πt´1ptq :“ πpµ|X pt ´ 1q, ...,X p0q,Apt ´ 1q, ...,Ap0qq and selects :

Aptq P argmax
APA

tAJθptqu

2. The environment then draws a random vector X ptq P Rd . The
learner then observes :

Y ptq “ Aptq d X ptq

3. Receives a Linear reward rptq “ AptqJX ptq

1Wang and Chen 2020.
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Thompson Sampling

4. Update the posterior πt pµq using the Bayes rule.

If we suppose X ptq to be Gaussian with variance σ2Id and mean µ‹. It
is reasonable to give ourselves a prior π0pµq uniform on Rd and a
Gaussian likelihood with variance σ2.

The posterior can therefore be written :

@i P rds, θiptq „ N

˜

řt
s Yipsq

Niptq
,

σ2

Niptq

¸

(1)

With Niptq :“
řt

s Aipsq the number of time item i has been selected.
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Our proposed version of TS2

We propose to draw :

@i P rds, θiptq „ N

˜

řt
s Yipsq

Niptq
,

2gptqσ2

Niptq

¸

(2)

With :

gptq :“
2

`

ln t ` pm ` 2q ln ln t ` m
2 ln p1 ` eq

˘

lnptq

With m :“ maxAPA }A}1. Note that gptq Ñ 2

2Zhang and Combes 2024.
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Regret of Thompson Sampling

Upper bound of algorithm the first version (1) for subgaussian
rewards :

O

˜

σ2dplnmq2

∆min
lnT `

dm3

∆2
min

` m
ˆ

σ
m2 ` 1
∆min

˙2`4m¸

.

Upper bound of algorithm the second version (2) for subgaussian
rewards :

O
ˆ

σ2d lnm
∆min

lnT `
σ2d2m lnm

∆min
ln lnT ` P

ˆ

m,d ,
1

∆min
,∆max, σ

˙˙

The degrees of the polynomial in m,d ,1{∆min, σ are respectively
30,10,20,20.
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Lower bound of TS for Bernoulli rewards

In our paper3 we proved a lower bound for the regret of Thompson
Sampling for Bernoulli rewards and Bernoulli likelihood and Beta
prior:

RpT , θq ě
∆min

4p∆min

p1 ´ p1 ´ p∆minq
T ´1q

With : p∆min “ exp

"

´ 2m
9

´

1
2 ´ p∆min

m ` 1?
m q

¯2
*

3Zhang and Combes 2021.
8 / 9



Bibliography

References

Wang, Siwei and Wei Chen (Mar. 2020). “Thompson Sampling
for Combinatorial Semi-Bandits”. In: arXiv:1803.04623 [cs]. arXiv:
1803.04623. URL: http://arxiv.org/abs/1803.04623 (visited on
05/26/2020).
Zhang, Raymond and Richard Combes (Oct. 2021). “On the

Suboptimality of Thompson Sampling in High Dimensions”.
In: arXiv:2102.05502 [cs, stat]. URL: http://arxiv.org/abs/2102.05502
(visited on 04/19/2023).
— (Oct. 2024). Thompson Sampling For Combinatorial

Bandits: Polynomial Regret and Mismatched Sampling
Paradox. arXiv:2410.05441. URL: http://arxiv.org/abs/2410.05441
(visited on 10/17/2024).

9 / 9

http://arxiv.org/abs/1803.04623
http://arxiv.org/abs/2102.05502
http://arxiv.org/abs/2410.05441

	Combinatorial Bandits
	Thompson Sampling for Combinatorial Bandits
	References

