Transfer Learning for Latent Variable Network Models Akhil Jalan

Motivation Introductior Results

Transfer Learning for Latent Variable Network Models

Akhil Jalan

Department of Computer Science, UT Austin

November 11, 2024

Joint with A. Mazumdar, S. Mukherjee & P. Sarkar.

Akhil Jalan

Motivation

Results

Conclusion

Motivation

Motivation: Biological Networks

In *metabolic networks*, can only test edges between prepared set of metabolites. $^{\rm 1}$

¹Christensen, Bjarke, and Jens Nielsen. "Metabolic network analysis: a powerful tool in metabolic engineering." Bioanalysis and Biosensors for Bioprocess Monitoring (2000): 209-231.

Akhil Jalan

Motivation

Introduction

Results

Conclusion

Introduction

Latent Variable Model

Transfer Learning for Latent Variable Network Models

Akhil Jalan

Motivation Introduction Results Conclusion **Goal.** Estimate a *target function* $f_Q : \mathcal{X} \times \mathcal{X} \to [0, 1]$ for $\mathcal{X} \subset \mathbb{R}^d$ compact. (Call f_Q a **latent variable network model**.) These generalize:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Stochastic Block Models (SBMs)
- Mixed-Membership Stochastic Block Models
- Generalized Random Dot Product Graphs
- Graphons

Ordinary Network Estimation

Transfer Learning for Latent Variable Network Models Akhil Jalan

Motivation Introduction Results Conclusion For latents $\mathbf{x}_1, \ldots, \mathbf{x}_n \stackrel{\text{iid}}{\sim} \mathcal{X}$, observe:

$$\forall i, j : f_Q(\mathbf{x}_i, \mathbf{x}_j)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

And output $\hat{Q} \in [0, 1]^{n \times n}$.

Limited Target Data

Transfer Learning for Latent Variable Network Models

Akhil Jalan

Motivation Introduction Results Conclusion **Our Setting.** For $S \subset \{1, 2, ..., n\}$ with $|S| := n_Q \ll n$, observe:

$$\forall i, j \in S : f_Q(\mathbf{x}_i, \mathbf{x}_j)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Notice: We cannot do better than $\Omega(1)$ error without additional information.

Transfer Setting

Transfer Learning for Latent Variable Network Models Akhil Jalan

Motivation Introduction Results

Our Setting (Formal)

For source f_P , target f_Q , and $S \subset \{1, 2, ..., n\}$ chosen uniformly at random with $|S| := n_Q \ll n$, observe:

 $\forall i, j \in S : \text{Bernoulli}(f_Q(\mathbf{x}_i, \mathbf{x}_j)) \\ \forall i, j \in [n] : \text{Bernoulli}(f_P(\mathbf{x}_i, \mathbf{x}_j))$

Let $Q \in \mathbb{R}^{n imes n}$, $Q_{ij} = f_Q(\pmb{x}_i, \pmb{x}_j)$. Output \hat{Q} to minimize:

Mean Squared Error
$$(Q, \hat{Q}) := \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n (Q_{ij} - \hat{Q}_{ij})^2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(All graphs are undirected so $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$ always.)

Akhil Jalan

Motivation

Introductio

Results

Conclusion

Results

Relation between source and target

Transfer Learning for Latent Variable Network Models Akhil Jalan

Motivation Introduction Results

 \Rightarrow

Rankings Assumption at quantile h_n

(P, Q) satisfy the rankings assumption at quantile $h_n = o(1)$ if $\forall i, \forall j \neq i$

 $j \in \{ \text{ bottom } h_n \text{-quantile of } P$'s graph distance $(i, \cdot) \}$

 $j \in \{ \text{ bottom } O(h_n) \text{-quantile of } Q$'s graph distance $(i, \cdot) \}$

Topologically, we require 2-hop neighborhoods to be similar.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algorithm

Transfer Learning for Latent Variable Network Models

Akhil Jalan

Motivation Introductio

Conclusion

Data for our algorithm.

- Source $A_P \in \{0,1\}^{n \times n}$, with $A_{P;ij} \sim \text{Bernoulli}(P_{ij})$
- Target $A_P \in \{0,1\}^{n_Q \times n_Q}$, with $A_{Q;ij} \sim \text{Bernoulli}(Q_{ij})$ for $i, j \in S$.

Idea. Use the rankings relationship to compute neighborhoods in P, then do regression over Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

Transfer Learning for Latent Variable Network Models

Akhil Jalan

Theorem (Informal)

 $\hat{Q} \in \mathbb{R}^{n \times n}$ such that:

Motivation Introduction Results

 $\mathbb{P}\left[\text{Mean Squared Error}(Q, \hat{Q}) \leq \frac{1}{n_Q^{\Omega(1)}}\right] \geq 1 - \frac{1}{n_Q^{\Omega(1)}}$

There exists an efficient algorithm such that, if P, Q satisfy rankings assumption and f_P, f_Q are Hölder smooth, outputs

Error rates depend on: Hölder smoothness of P, Q, dimension d, and log n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Metabolic Network Estimation

Estimating metabolic network of iJN1463 (Pseudomonas putida).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Left: Source iWFL1372 (Escherichia coli W)

Right: Source iPC815 (Yersinia pestis).

Akhil Jalan

Motivatior

mirouuc

Results

Conclusion

Conclusion

Future Work

Transfer Learning for Latent Variable Network Models Akhil Jalan

Motivation Introduction Results Conclusion Directions for future work:

- Very sparse input graphs (need a different graph distance at edge density $n^{-1/2}$)
- Multiple sources with different guarantees
- Minimax lower bounds for latent variable models
- Incorporating side information in specific applications (e.g. bioinformatics)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Akhil Jalan

Motivation

Introduction

Results

Conclusion

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

akhiljalan@utexas.edu