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Motivation: Biological Networks

In metabolic networks, can only test edges between prepared
set of metabolites. 1

1Christensen, Bjarke, and Jens Nielsen. “Metabolic network analysis: a
powerful tool in metabolic engineering.” Bioanalysis and Biosensors for
Bioprocess Monitoring (2000): 209-231.



Transfer
Learning for

Latent
Variable
Network
Models

Akhil Jalan

Motivation

Introduction

Results

Conclusion

Introduction



Transfer
Learning for

Latent
Variable
Network
Models

Akhil Jalan

Motivation

Introduction

Results

Conclusion

Latent Variable Model

Goal. Estimate a target function fQ : X × X → [0, 1] for
X ⊂ Rd compact. (Call fQ a latent variable network model.)
These generalize:

Stochastic Block Models (SBMs)

Mixed-Membership Stochastic Block Models

Generalized Random Dot Product Graphs

Graphons
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Ordinary Network Estimation

For latents x1, . . . , xn
iid∼ X , observe:

∀i , j : fQ(xi , xj)

And output Q̂ ∈ [0, 1]n×n.
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Limited Target Data

Our Setting. For S ⊂ {1, 2, . . . , n} with |S | := nQ << n,
observe:

∀i , j ∈ S : fQ(xi , xj)

Notice: We cannot do better than Ω(1) error without
additional information.
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Transfer Setting

Our Setting (Formal)

For source fP , target fQ , and S ⊂ {1, 2, . . . , n} chosen
uniformly at random with |S | := nQ << n, observe:

∀i , j ∈ S : Bernoulli(fQ(xi , xj))

∀i , j ∈ [n] : Bernoulli(fP(xi , xj))

Let Q ∈ Rn×n, Qij = fQ(xi , xj). Output Q̂ to minimize:

Mean Squared Error(Q, Q̂) :=
1

n2

n∑
i=1

n∑
j=1

(Qij − Q̂ij)
2

(All graphs are undirected so f (x , y) = f (y , x) always.)
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Relation between source and target

Rankings Assumption at quantile hn

(P,Q) satisfy the rankings assumption at quantile hn = o(1) if
∀i ,∀j 6= i

j ∈ { bottom hn-quantile of P’s graph distance(i , ·)}

⇒

j ∈ { bottom O(hn)-quantile of Q’s graph distance(i , ·)}

Topologically, we require 2-hop neighborhoods to be similar.
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Algorithm

Data for our algorithm.

Source AP ∈ {0, 1}n×n, with AP;ij ∼ Bernoulli(Pij)

Target AP ∈ {0, 1}nQ×nQ , with AQ;ij ∼ Bernoulli(Qij) for
i , j ∈ S .

Idea. Use the rankings relationship to compute neighborhoods
in P, then do regression over Q.
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Theorem

Theorem (Informal)

There exists an efficient algorithm such that, if P,Q satisfy
rankings assumption and fP , fQ are Hölder smooth, outputs
Q̂ ∈ Rn×n such that:

P
[
Mean Squared Error(Q, Q̂) ≤ 1

n
Ω(1)
Q

]
≥ 1− 1

n
Ω(1)
Q

Error rates depend on: Hölder smoothness of P,Q, dimension
d , and log n.
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Metabolic Network Estimation
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Our Algorithm
SBM Algorithm
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Oracle, p = 0.5

Estimating metabolic network of iJN1463 (Pseudomonas
putida).

Left: Source iWFL1372 (Escherichia coli W)

Right: Source iPC815 (Yersinia pestis).
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Future Work

Directions for future work:

Very sparse input graphs (need a different graph distance
at edge density n−1/2)

Multiple sources with different guarantees

Minimax lower bounds for latent variable models

Incorporating side information in specific applications (e.g.
bioinformatics)
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Thank you!
akhiljalan@utexas.edu
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