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❏ Large Language Models (LLMs) and other SOTA architectures are based on Transformer.

❏ LLMs power is driven by volume of data and the number of parameters they are trained upon.

❏ LLMs model size is hugely increasing over year

Benefit of Token Merging 
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4Source: https://medium.com/@harishdatalab/unveiling-the-power-of-large-language-models-llms-e235c4eba8a9

Requiring (i) large memory-GPU 
and (ii) higher computational 
costs for training/inference.



❏ Combining Tokens to a Fixed Size 

Related Works on Token Reduction 
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○ None of previous methods (e.g. new efficient architecture, pruning, pooling, etc) can offer a reasonable 

speed-accuracy trade-off when combining tokens without training

E.g., Token Pooling drops of 10-40% accuracy when combining tokens without training.

ToMe is proposed (Bolya, Daniel et al., 2023, ICLR 2023) which is a simple method but 
increase throughput ViT for both training or without training (off-the-shelf) settings.

Experiments showed that ToMe can 2 x throughput of state-of-the-art ViT-L @ 512 and ViT-H @ 518 
models on images and 2.2× the throughput of ViT-L on video with only a 0.2-0.3% accuracy drop

Bolya, Daniel, et al. "Token merging: Your ViT but Faster." ICLR 2023, Top 5% paper.



❏ ToMe inserts a token merging module into an existing ViT (Figure 1.b)

❏ In each block of ViT, ToMe merges tokens to reduce by a number of r tokens. 

➔ Over L blocks in the network, merging rL tokens.

➔ For e.g., on ViT-L/16, if we remove r = 8 tokens, at the final 24th layer, we remove upto 98% tokens (Figure 1.a)

1. TOME - Method
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❏ ToMe and its variations (PuMer, LTMP, DiffRate, etc) have some significant drawbacks:

● Firstly, the choice of a tokens-splitting strategy highly affects the performance of the algorithm. 

➔ ToMe divided by odd and even indices; therefore, unavoidable mis-merging occurs since tokens in set A 

perceive tokens in set B but not themselves

● Secondly, while the bipartite soft matching algorithm works effectively in the initial layers where redundant tokens for 

backgrounds and noise are abundant, as tokens go deeper into the network, there is a risk of compromising 

informative tokens that represent the main object because of their high similarity.

2. Energy-based Merging
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Cao, Qingqing, Bhargavi Paranjape, and Hannaneh Hajishirzi. "Pumer: Pruning and merging tokens for efficient vision language models." ACL 2023
Bonnaerens, Maxim, and Joni Dambre. "Learned Thresholds Token Merging and Pruning for Vision Transformers." TMLR 2023



2. Spectrum-preserving Token Merging
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We address those problems by prioritizes the protection of informative tokens using an additional criterion called 
energy score.

Several experiments on two tasks, image classification, and image-text retrieval, using both large and small backbones 
models, our method demonstrates superior off-the-shelf performance.



2. Energy-based Merging - Method
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2. Spectrum preserving Token Merging - 
Method
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Adaptive changing



2. Spectrum preserving  Merging - Method
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Tokens representing ʻcatʼ 
objects will have smaller 
energy than other regions.



2. Spectrum preserving  Merging - Method

Low energy tokens are protected at any layer.



2. Spectrum preserving Merging - Performance
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2. Spectrum preserving Merging - Experiments
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VQA with LLM
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PiToMe: Energy-based Merging - Connection to Spectral Properties
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2. Spectrum preserving Merging - Performance
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Image-Text Retrieval: Visualization
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Thank you for listening!

Our implementation is available on GitHub


