

Reinforcement Learning Guided Semi-Supervised Learning

Marzi Heidari¹, Hanping Zhang¹, Yuhong Guo^{1,2}

¹Carleton University, Ottawa, Canada

²CIFAR AI Chair, Amii, Canada

Introduction

- Semi-Supervised Learning (SSL): Uses a small labeled dataset with a large unlabeled pool.
- Limitations: Heuristics or predefined rules for pseudo-labeling methods are often suboptimal.
- Challenge: How can we better leverage unlabeled data to guide the learning process?

Reinforcement Learning Guided Semi-Supervised Learning (RLGSSL)

- Treats SSL as a one-armed bandit problem.
- Dynamically adapt and respond to the data.
- Beyond standard norm for SSL.
- Potential to transform SSL frameworks.

 Frames SSL as one-armed bandit problem.

- Frames SSL as one-armed bandit problem.
- State: $s = (X^l, Y^l, X^u)$.

- Frames SSL as one-armed bandit problem.
- State: $s = (X^l, Y^l, X^u)$.
- **Policy**: The prediction networks $(\pi_{\theta}(\cdot) = P_{\theta}(\cdot))$
- Action: Model's predictions (pseudo-labels).

- Frames SSL as one-armed bandit problem.
- State: $s = (X^l, Y^l, X^u)$.
- **Policy**: The prediction networks. $(\pi_{\theta}(\cdot) = P_{\theta}(\cdot))$
- Action: Model's predictions (pseudo-labels).
- Reward: Generalization measured via label mixup between labeled and pseudo-labeled samples.

Reward Function

Balanced utilization of labeled and unlabeled data by Inter-mixup:

$$x_i^{\text{m}} = \mu x_i^u + (1 - \mu) x_i^l, \qquad \mathbf{y}_i^{\text{m}} = \mu \mathbf{y}_i^u + (1 - \mu) \mathbf{y}_i^l$$

 Reward: Negative disagreement between model predictions and mixup labels:

$$\mathcal{R}(s,a;\operatorname{sg}[\theta]) = \mathcal{R}(X^l,Y^l,X^u,Y^u;\operatorname{sg}[\theta]) = -\frac{1}{C \cdot N^{\operatorname{m}}} \sum\nolimits_{i=1}^{N^{\operatorname{m}}} ||P_{\theta}(x_i^{\operatorname{m}}) - \mathbf{y}_i^{\operatorname{m}}||_2^2$$

Reinforcement Learning Loss

- One-Armed Bandit Principle: Optimize one-time reward based on the policy output.
- Exploits non-differentiable reward.
- Enables policy gradient with a deterministic policy.
- KL-Divergence Weighted Negative Reward:

$$\mathcal{L}_{\mathrm{rl}}(\theta) = -\mathbb{E}_{\mathbf{y}_{i}^{u} \sim \pi_{\theta}} \mathrm{KL}(\mathbf{e}, \mathbf{y}_{i}^{u}) \mathcal{R}(s, a; \mathrm{sg}[\theta]) = -\mathbb{E}_{x_{i}^{u} \in \mathcal{D}_{u}} \mathrm{KL}(\mathbf{e}, P_{\theta}(x_{i}^{u})) \mathcal{R}(s, a; \mathrm{sg}[\theta])$$

 Measures distance between label predictions and a uniform distribution vector e=1/C

Teacher Student Framework

Teacher parameter update via WMA:

$$\theta_T = \beta \, \theta_T + (1 - \beta) \, \theta_S$$

Supervised Loss on labeled data:

$$\mathcal{L}_{\sup}(\theta_S) = \mathbb{E}_{(x^l, \mathbf{y}^l) \in \mathcal{D}^l} \left[\ell_{CE} \left(P_{\theta_S}(x^l), \mathbf{y}^l \right) \right]$$

Consistency Loss between student and teacher on unlabeled data:

$$\mathcal{L}^{\text{cons}} = \mathbb{E}_{x^u \in \mathcal{D}^u} \left[\ell_{\text{KL}} \left(P_{\theta_S}(x^u), P_{\theta_T}(x^u) \right) \right]$$

• Learning objective: $\mathcal{L}(\theta_S) = \mathcal{L}_{rl} + \lambda_1 \mathcal{L}_{sup} + \lambda_2 \mathcal{L}_{cons}$

Experimental Results

Table 1: Performance of RLGSSL and state-of-the-art SSL algorithms with the CNN-13 network. We report the average test errors and the standard deviations of 5 trials.

Dataset	CIFAR-10			CIFAR-100	
Number of Labeled Samples	1000	2000	4000	4000	10000
Supervised	$39.95_{(0.75)}$	$27.67_{(0.12)}$	$20.42_{(0.21)}$	$58.31_{(0.89)}$	44.56 _(0.30)
Supervised + MixUp [40]	$31.83_{(0.65)}$	$24.22_{(0.15)}$	$17.37_{(0.35)}$	$54.87_{(0.07)}$	$40.97_{(0.47)}$
Π-model [6]	$28.74_{(0.48)}$	$17.57_{(0.44)}$	$12.36_{(0.17)}$	$55.39_{(0.55)}$	$38.06_{(0.37)}$
Temp-ensemble [6]	$25.15_{(1.46)}$	$15.78_{(0.44)}$	$11.90_{(0.25)}$	-	$38.65_{(0.51)}$
Mean Teacher[8]	$21.55_{(0.53)}$	$15.73_{(0.31)}$	$12.31_{(0.28)}$	$45.36_{(0.49)}$	$35.96_{(0.77)}$
VAT [5]	$18.12_{(0.82)}$	$13.93_{(0.33)}$	$11.10_{(0.24)}$	_` _` ´	-` ′
SNTG [15]	$18.41_{(0.52)}$	$13.64_{(0.32)}$	$10.93_{(0.14)}$		$37.97_{(0.29)}$
Learning to Reweight [41]	$11.74_{(0.12)}$	- ′	$9.44_{(0.17)}$	$46.62_{(0.29)}$	$37.31_{(0.47)}$
MT + Fast SWA [14]	$15.58_{(0.12)}$	$11.02_{(0.23)}$	$9.05_{(0.21)}$	_	$33.62_{(0.54)}$
ICT [16]	$12.44_{(0.57)}$	$8.69_{(0.15)}$	$7.18_{(0.24)}$	$40.07_{(0.38)}$	$32.24_{(0.16)}$
RLGSSL (Ours)	$9.15_{(0.57)}$	$6.90_{(0.11)}$	$6.11_{(0.10)}$	$36.92_{(0.45)}$	$29.12_{(0.20)}$

Thank You

