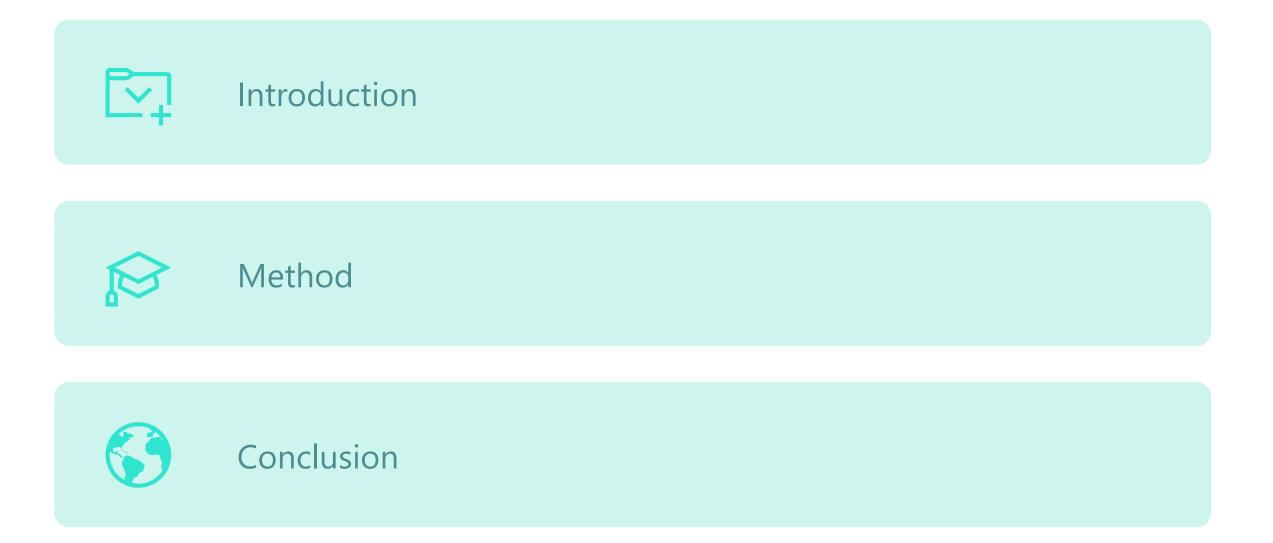
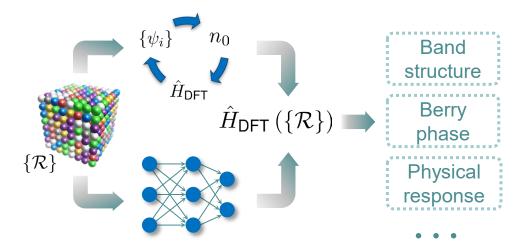
Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models

Zun Wang Microsoft Research AI for Science



Preliminary

- Schrödinger equation under non-orthogonal basis $H(\mathbf{k})v_{n\mathbf{k}} = E_{n\mathbf{k}}S(\mathbf{k})v_{n\mathbf{k}}$ where $H_{i\alpha,j\beta} = \langle \phi_{i\alpha} | \widehat{H} | \phi_{j\beta} \rangle$ and $S_{i\alpha,j\beta} = \langle \phi_{i\alpha} | \phi_{j\beta} \rangle$.
- DFT Hamiltonian as a function of molecular structure $\{\mathcal{R}\}$



Related works

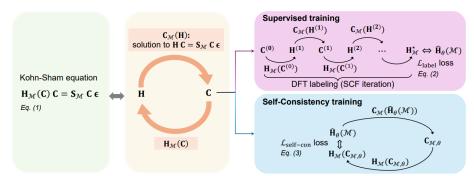
- SchNOrb, PhiSNet, DeepH, DeepH-E3, QHNet, ...
- Additional properties of DFT Hamiltonian:

Self-consistency

 n_0

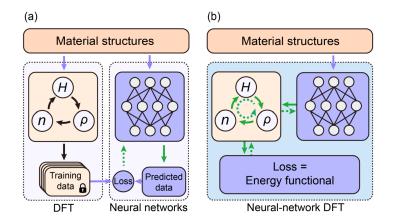
 H_{DFT}

• Incorporate self-consistency:



• AI2DFT

• SC Loss



Schütt, *et al.* Nat. Commun. 2019. Unke, Oliver, *et al.* NeurIPS 34 (2021): 14434-14447. Li, He, *et al.* Nat. Comput. Sci.2.6 (2022): 367-377. Gong, Xiaoxun, et al. Nat. Commun.14.1 (2023): 2848. Yu, Haiyang, et al. ICML. PMLR, 2023. Zhang, He, *et al.* ICML 41 Li, Yang, *et al.* Phys. Rev. Lett., 133(7):076401, 2024.

Motivation

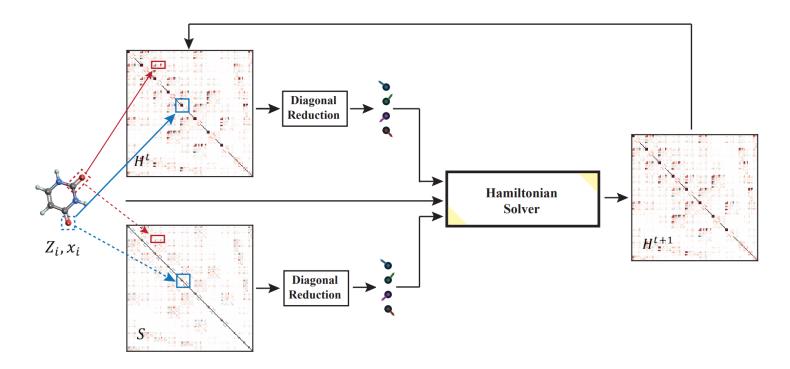
Intertwining **DFT computations** with the **loss function** during.

Incorporate self-consistency bypassing DFT ???

Model architecture

DEQH

- **Deep equilibrium model (DEQ):** $z^* = f(x, z^*)$
- Hamiltonian solver rather than Hamiltonian predictor
 - Hamiltonian predictor: H = f(Z, R)
 - Hamiltonian solver: $H^* = f(Z, R, H^*)$



Injection of Hamiltonian and overlap matrix

• Diagonal reduction

- Matrix element between atom i and j of single-electron operator represented in the atomic orbitals { Φ } is $\mathbf{T}_{i\mu,j\nu} = \langle \Phi^{\mu}_i | \hat{\mathcal{O}} | \Phi^{\nu}_j \rangle$
- Wigner–Eckart theorem $\langle jm|T_q^{(k)}|j'm'\rangle = \langle j'm'kq|jm\rangle\langle j \parallel T^{(k)} \parallel j'\rangle$ ensures that there exists a set of T-independent coefficients Q, s.t. $\mathbf{h}_A^l \coloneqq \sum_{\mu,\nu} T_{AA}^{\mu,\nu} Q_{nlm}^{\mu,\nu}$ is injective and satisfy equivariance.

$$\begin{split} \tilde{Q}_{nlm}^{\mu,\nu} &\coloneqq \tilde{Q}_{nlm}^{n_1,l_1,m_1;n_2,l_2,m_2} \\ &= \int_{\mathbf{r}\in\mathbb{R}^3} (\Phi_A^{n_1,l_1,m_1}(\mathbf{r}))^* \Phi_A^{n_2,l_2,m_2}(\mathbf{r}) \tilde{\Phi}_A^{n,l,m}(\mathbf{r}) d\mathbf{r} \end{split}$$

Results

• MD17	Dataset	Model	$H\left[10^{-6}E_{h}\right]\downarrow$	$\epsilon [10^{-6} E_h] \downarrow$	$\psi \ [10^{-2}] \uparrow$
	Water	QHNet DEQHNet	10.79 36.07	33.76 335.86	99.99 99.99
	Ethanol	QHNet DEQHNet	20.91 18.73	81.03 106.94	99.99 100.00
	Malonaldehyde	QHNet DEQHNet	21.52 17.97	82.12 93.79	99.92 99.90
	Uracil	QHNet DEQHNet	20.12 15.07	113.44 107.49	99.89 99.89

• QH9

Dataset	Model	diagonal	$\begin{array}{c} H \left[10^{-6} E_h \right] \downarrow \\ \text{non-diagonal} \end{array}$	all	$\epsilon \left[10^{-6} E_h \right] \downarrow$	$\psi [10^{-2}] \uparrow$
QH9-stable-id	QHNet	111.21	73.68	76.31	798.51	95.85
	DEQHNet	96.43	58.75	61.42	4383.10	99.84
QH9-stable-ood	QHNet	111.72	69.88	72.11	644.17	93.68
	DEQHNet	81.01	51.66	53.23	5657.07	99.80
QH9-dynamic-geo	QHNet	149.62	92.88	96.85	834.47	94.45
	DEQHNet	84.97	60.04	62.14	1864.06	99.92
QH9-dynamic-mol	QHNet	416.99	153.68	173.92	9719.58	79.15
	DEQHNet	210.76	97.18	105.80	4625.88	99.80

Conclusion

- The Hamiltonian's iterative qualities are often neglected by standard machine learning approaches for its direct prediction.
 Our approach integrates **DEQ**s with off-the-shelf ML frameworks, leveraging node features derived from the Hamiltonian and overlap matrix to harness these **iterative** aspects.
- Traditional machine learning models primarily serve as Hamiltonian predictors, and while recent self-consistency
 integrating frameworks aim to refine training, they incur high computational costs. DEQH model distinguishes itself by
 acting fundamentally as a **solver**, iteratively determining the Hamiltonian with the deep equilibrium model's fixed-point
 capabilities. This intrinsic **self-consistency and computational efficiency** render DEQH model a scalable approach for
 precise quantum state prediction without a significant increase in complexity.
- We have benchmarked DEQHNet against the MD17 and QH9 datasets, demonstrating that the incorporation of Hamiltonian self-consistency can significantly enhance predictive accuracy.
- We conduct an ablation study on DEQHNet, and present conjectures regarding the efficacy of networks that incorporate DEQs for the task of learning Hamiltonians.

Thank You!