Who's Gaming the System?

A Causally-Motivated Approach for Detecting Strategic Adaptation

Trenton Chang¹, Lindsay Warrenburg², Sae-Hwan Park², Ravi B. Parikh^{2,3}, Maggie Makar¹, Jenna Wiens¹

¹Division of Computer Science & Engineering, University of Michigan

²Perelman School of Medicine, University of Pennsylvania ³Winship Cancer Institute, Emory University

NeurIPS 2024

Let's talk about American health insurance.

Medicare in the U.S.

U.S. permanent residents and citizens over 65 are eligible for government-subsidized healthcare.

Total Enrolled*

27.5M

In Medicare Advantage (MA)* (private insurance, gov't reimbursement)

*Most recent figures from Center for Medicare & Medicaid Services, 2021. Individuals under 65 with certain conditions may be eligible for Medicare, and those over 65 who have not paid taxes for sufficiently long may not qualify.

How to game insurance

Motivating problem: insurance gaming

(insurance company)

Insurance plans maximize utility

Insurance plans maximize utility

The gaming deterrence parameter:

costs scale differently by plan

$$\Delta(d_p^*;\lambda_p) = \underset{\bar{d}\in[0,1]}{\arg\max} R(\bar{d}) - \lambda_p c(\bar{d} - d_p^*)$$

Not all actions are equally "costly" to all plans!

*however, note that the underlying cost c (and also R) are shared across plans.

Gaming deterrence: intuition

Gaming deterrence: intuition

We can't tell definitively if a plan is gaming...

Given our assumptions about the utility function, for any agent p:

$$\lambda_p \in \left[\frac{R'(\Delta_p(d_p^*))}{c'(\Delta_p(d_p^*))}, \infty\right)$$

Every possible value of ground truth is consistent with a different value of the gaming deterrence parameter.

...but we can globally rank plans by gaming deterrence!

*Under the three standard assumptions for valid causal inference + assumptions used in our utility function

In simulation: our approach requires **fewer audits** to identify the **worst offenders.**

Top-5 sens. (\uparrow), 7 audits 1.0 0.5 0.5 0.0 (methods on x-axis)

In simulation: our approach requires **fewer audits** to identify the **worst offenders.**

In simulation: our approach requires **fewer audits** to identify the **worst offenders.**

Top-5 sens. (\uparrow), 7 audits

Payout-only

DIF

DragonNet

S+IPW

In simulation: our approach requires fewer audits to identify the worst offenders.

Top-5 sens. (\uparrow), 7 audits

Causal methods

Approaches leveraging causal assumptions about the "effect" of the plan itself are best

Takeaways

- Systematic gaming be hard to detect
- Detecting gaming definitively is infeasible (without unrealistic assumptions)
- But a ranking of the gaming deterrence parameter is possible via causal effect estimation