
SemCoder: Training Code Language Models w/
Comprehensive Semantics Reasoning

1

Yangruibo (Robin) Ding, Jinjun Peng, Marcus J. Min,
Gail Kaiser, Junfeng Yang, Baishakhi Ray

Columbia University

Semantics

2

Source CodeNatural Language

Implement a function that takes a list of potential energies,
sorts them in ascending order, removes duplicates, and
returns the indices of the unique sorted energies.

[10.5, 8.2, 10.5, 7.1, 8.2] -> [3, 1, 0]

[Flexible, Understandable, Static] [Formal, Symbolic, Static & Dynamic]

def func(elems: List[float]) -> List[int]:
elems_indices = list(enumerate(elems))
sorted_elems_indices = sorted(elems_indices, key=lambda x: x[1])
unique_elems = []
unique_indices = []
for index, elem in sorted_elems_indices:

unique_elems.append(elem)
unique_indices.append(index)

return unique_indices

def func(elems: List[float]) -> List[int]:
elems_indices = list(enumerate(elems))
sorted_elems_indices = sorted(elems_indices, key=lambda x: x[1])
unique_elems = []
unique_indices = []
for index, elem in sorted_elems_indices:

 if elem not in unique_elems:
 unique_elems.append(elem)
 unique_indices.append(index)

return unique_indices

[10.5, 8.2, 10.5, 7.1, 8.2] [3, 1, 4, 0, 2]

[10.5, 8.2, 10.5, 7.1, 8.2] [3, 1, 0]

3

Related Work

• State-of-the-art Code LMs struggle to reason about runtime behavior[1][2][3][4]

• I/O Prediction
• Program States
• Execution Path
• Execution Traces

• Naïve SFT provides limited improvement for execution reasoning [1][2]

[1] Gu, et al., 2024. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution. ICML’24.
[2] Ni et al., 2024. NExT: Teaching Large Language Models to Reason about Code Execution. ICML’24.
[3] Chen et al., 2024. Reasoning Runtime Behavior of a Program with LLM: How Far Are We? ICSE’25.
[4] Liu, et al., 2024. CodeMind: A Framework to Challenge Large Language Models for Code Reasoning.

from typing import List

def unique_sorted_indices(energies: List[float]) -> List[int]: # [INPUT] {"energies": [10.5, 8.2, 10.5, 7.1, 8.2]}
[/INPUT]
 energy_dict = {} # [STATE-0] {"energy_dict": {}} [/STATE-0]
 for idx, energy in enumerate(energies): # [STATE-1] {"idx": 0, "energy": 10.5} [/STATE-1][STATE-3] {"idx": 1,
"energy": 8.2} [/STATE-3] ... [STATE-8] {"idx": 4, "energy": 8.2} [/STATE-8]
...
return unique_sorted_indices # [OUTPUT] [3, 1, 0] [/OUTPUT]

4

SemCoder: Reasoning Comprehensive Code Semantics

Approximate

• Overall Objectives
• High-level Functionalities
• Docstring & Documentation

Symbolic

• Symbolic Logic
• Algorithms
• Control Flow

Operational

• Input Coverage
• Execution Order
• Program States Transition

Abstract

• Ignore low-level details
• Invariant Properties
• Important Attributes

5

Code Semantics Learning Objective:
Monologue Reasoning

The Internet data is not the data you want for your Transformers – a nearest neighbor actually gets you
really far, surprisingly. What you want is the inner-thought monologue of your brain. If we had billions
of that, AGI is here, roughly speaking.

– Andrej Karpathy, 2024

6

Forward Monologue

def unique_sorted_indices(energies: List[float])
-> List[int]:
 energy_dict = {}
 for idx, energy in enumerate(energies):
 energy_dict.setdefault(energy, idx)
 sorted_unique_energies = sorted(set(energies))
 unique_sorted_indices = [energy_dict[energy]

for energy in sorted_unique_energies]
 return unique_sorted_indices

Input: [10.5, 8.2, 10.5, 7.1, 8.2]
Output: ???

Symbolic: Code Step-1: Approximate: Functionalities
The function `unique_sorted_indices` takes a list of floating-point numbers named
`energies` as input. Its purpose is to find the indices of the unique elements in the
input list when sorted in ascending order. Here’s how it works:
• A dictionary `energy_dict` is created to map each unique energy value to its first

occurrence index.
• The `enumerate` function is used to iterate through the list and populate the

dictionary with energy values as keys and their respective indices as values.
• Then, the function creates a sorted list of unique energy values from the input list

using `sorted(set(energies))`.
• Finally, it creates a list of indices that correspond to these sorted unique

energies using a list comprehension that retrieves the original indices from the
dictionary.

Step-2: Abstract: Properties &
Constraints
• The input list can contain duplicate values and is of

variable length.
• The output list will have unique energy values sorted

in ascending order and will contain their original
indices from the input list.

• If an energy value is repeated, only its first
occurrence's index is stored in the dictionary.

• The function ensures that the indices in the output
list reflect the order of the unique values after
sorting.

Step-3: Operational: Execution “Simulation”
1. Initialization:

 - `energy_dict` is initialized as an empty dictionary.
2. Filling the Dictionary:

 - The `for` loop begins, iterating through the list with `enumerate`:
 - Iter 1: ..
 ...
 - Iter 5: For `idx = 4`, `energy = 8.2`. Since 8.2 already exists in the dictionary, it is not

updated.
 Final state of `energy_dict` after the loop: `{10.5: 0, 8.2: 1, 7.1: 3}`.

3. Sorting Unique Energies:
 - The unique energies are derived and sorted, resulting in `sorted_unique_energies = [7.1, 8.2, 10.5]`.

4. Retrieving Original Indices:
 - A list comprehension retrieves the original indices corresponding to these sorted unique energies:
 - For `energy = 7.1`, the index is `3`.
 - For `energy = 8.2`, the index is `1`.
 - For `energy = 10.5`, the index is `0`.
 - Thus, `unique_sorted_indices` becomes `[3, 1, 0]`.

5. Return Statement:
 - The function returns the list `[3, 1, 0]`.[1] Hunt and Thomas, 2000. The Pragmatic Programmer: from journeyman to master

7

Backward Monologue

def unique_sorted_indices(energies: List[float])
-> List[int]:
 energy_dict = {}
 for idx, energy in enumerate(energies):
 energy_dict.setdefault(energy, idx)
 sorted_unique_energies = sorted(set(energies))
 unique_sorted_indices = [energy_dict[energy]

for energy in sorted_unique_energies]
 return unique_sorted_indices

Input: ???
Output: [3, 1, 0]

Symbolic: Code

Step-1: Approximate: Functionalities

Step-2: Abstract: Properties &
Constraints

Step-3: Abstract & Operational: Execution “Deduction”

• The input list may contain duplicate energy
values, but only the first occurrence's index
will be recorded in `energy_dict`.

• The output will be ordered according to the
sorted unique energy values.

• The length of the output list will equal the
number of unique energy values in the input list.

- Key constraints according to the output:
 - `energy_dict` must map some unique energies to these indices.
 - The first unique energy corresponds to index `3`, the second unique to `1`, and

the third unique to `0`.
- Energy Values:
 - Suppose the values in the `energies` list that correspond to these indices are:
 - `energies[3]` -> first unique energy (let's call it `e1`)
 - `energies[1]` -> second unique energy (let's call it `e2`)
 - `energies[0]` -> third unique energy (let's call it `e3`)

- Expected Ordering:
 - In the sorted list of unique energies, `e1` must be the smallest, followed by

`e2`, and then `e3`.
- Choice of Values:
 - A simple set of values array can be created. We must ensure that:
 - The energy at index `3` is less than the energy at index `1` and both should

be less than the energy at index `0`.

Let’s select:
- `energies[3] = 1.0` (first unique, smallest value)
- `energies[1] = 3.0` (second unique, middle value)
- `energies[0] = 5.0` (third unique, largest value)

To ensure proper indexing and repetition, we can fill the rest of the list with
duplicates of such values, for instance:
```python
energies = [5.0, 3.0, 5.0, 1.0]
```
With this arrangement, we maintain the index mapping:
- `5.0` at index `0` (first occurrence),
- `3.0` at index `1` (first occurrence),
- `1.0` at index `3` (first occurrence).

8

PyX: The Dataset

9

PyX: Fully Executable Dataset with Tests

Wei et al., 2024. Magicoder: Empowering Code Generation with OSS-Instruct. ICML’24.

Parsable
Code Seeds

Language Model

Solution

Test

Oracle x N

x M

LLM as Judge

Coding
Problem x K x M

x L

Stage-1: Sampling

Stage-2: Selection

Coding
Problem

Test

Oracle x N
Test

Oracle
Solution

Solution

PyX

Coding
Problem

Test

Oracle
x K x LSolution

10

Monologue Annotation: Rejection Sampling

Pyx:
- Code
- Executable Input

Pyx:
- Code
- Expected Output

Forward Monologue

Backward Monologue

Annotation
Model

Functional
Summary

Properties &
Constraints

Approximate
Semantics

Abstract
Semantics

Execution
Simulation

Execution
Deduction

Operational
SemanticsCode Samples

Output

Input

Execution-based
Rejection Sampling

11

Joint Training: Generation and Reasoning

Approximate

• Overall Objectives
• High-level Functionalities
• Docstring & Documentation

Symbolic

• Symbolic Logic
• Algorithms
• Control Flow

Operational

• Input Coverage
• Execution Order
• Program States Transition

Abstract

• Ignore low-level details
• Invariant Properties
• Important Attributes

Source CodeNatural Language

Implement a function that takes a list of
potential energies, sorts them in
ascending order, removes duplicates, and
returns the indices of the unique sorted
energies.

def unique_sorted_indices(energies: List[float])
-> List[int]:
 energy_dict = {}
 for idx, energy in enumerate(energies):
 energy_dict.setdefault(energy, idx)
 sorted_unique_energies = sorted(set(energies))
 unique_sorted_indices = [energy_dict[energy]
for energy in sorted_unique_energies]
 return unique_sorted_indices\

• The input list can contain duplicate values and
is of variable length.

• The output list will have unique energy values
sorted in ascending order and will contain their
original indices from the input list.

• If an energy value is repeated, only its first
occurrence's index is stored in the dictionary.

• The function ensures that the indices in the
output list reflect the order of the unique
values after sorting.

Sorting Unique Energies:
 The unique energies are derived and sorted,
resulting in `sorted_unique_energies = [7.1, 8.2,
10.5]`.
Retrieving Original Indices:
For `energy = 7.1`, the index is `3`.
For `energy = 8.2`, the index is `1`.
For `energy = 10.5`, the index is `0`.
Thus, `unique_sorted_indices` becomes `[3, 1, 0]`.

12

Experiments

13

Results: Code Generation

72.6

63.4

75.2

61.2

66.5

60.4

75.4

61.9

76.8

71.3

75.7

64.4
61.6

56.7

70.1

59.3

73.2

68.9

79.9

65.3

79.3

74.4

79.6

68.5

40

45

50

55

60

65

70

75

80

85

HumanEval HumanEval + MBPP MBPP+

SC2-Inst-15b Magicoder-DS Magicoder-DS-S Llama-3-8b SemCoder SemCoder-S

20.9
21.9

20.8

22.9

25.3

27.5

15

17

19

21

23

25

27

29

LiveCodeBench-Lite

DSCoder-Inst-6.7b Magicoder-DS-S
Llama-3.1-Inst-8b GPT-3.5-0125
Claude-3-Sonnet SemCoder-S

• SemCoder shows competitive performance in code generation

[1] Jain, et al., 2024. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code.
[2] Liu et al., 2023. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.

14

Results: Execution Reasoning

41.9 43.2
45.5

41.9
44.6 43.5

47.4

36

50.1

43.6

50.3

59
62.5

65.1
63.6 63.9

30

35

40

45

50

55

60

65

70

CruxEval-I CruxEval-O

CRUXEval w/ Reasoning

DSCoder-inst-6.7b Magicoder-DS Magicoder-DS-S CodeLlama-Inst-13b

CodeLlama-inst-34b GPT-3.5-0613 SemCoder SemCoder-S

• SemCoder significantly outperforms in execution reasoning

50.8

58.6

41.7
43.8 44.4

59.7 61.2

15

20

25

30

35

40

45

50

55

60

65

LiveCodeBench-Code Exec

Codestral-22b Llama-3-Inst-70b

Gemini-Pro GPT-3.5-0125

Claude-3-Sonnet SemCoder

SemCoder-S
[1] Gu, et al., 2024. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution. ICML’24.
[2] Jain, et al., 2024. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code.

19

Thanks!!

Pre-print: https://arxiv.org/abs/2406.01006
Model, Data, & Code: https://github.com/ARiSE-Lab/SemCoder

