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Source CodeNatural Language

Implement a function that takes a list of potential energies, 
sorts them in ascending order, removes duplicates, and 
returns the indices of the unique sorted energies. 

[10.5, 8.2, 10.5, 7.1, 8.2] -> [3, 1, 0]

[Flexible, Understandable, Static] [Formal, Symbolic, Static & Dynamic]

def func(elems: List[float]) -> List[int]:
elems_indices = list(enumerate(elems))
sorted_elems_indices = sorted(elems_indices, key=lambda x: x[1])
unique_elems = []
unique_indices = []
for index, elem in sorted_elems_indices:

unique_elems.append(elem)
unique_indices.append(index)

return unique_indices

def func(elems: List[float]) -> List[int]:
elems_indices = list(enumerate(elems))
sorted_elems_indices = sorted(elems_indices, key=lambda x: x[1])
unique_elems = []
unique_indices = []
for index, elem in sorted_elems_indices:

        if elem not in unique_elems:
    unique_elems.append(elem)
    unique_indices.append(index)

return unique_indices

[10.5, 8.2, 10.5, 7.1, 8.2]     [3, 1, 4, 0, 2]

[10.5, 8.2, 10.5, 7.1, 8.2]     [3, 1, 0]
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Related Work

• State-of-the-art Code LMs struggle to reason about runtime behavior[1][2][3][4]

• I/O Prediction
• Program States
• Execution Path
• Execution Traces

• Naïve SFT provides limited improvement for execution reasoning [1][2]

[1] Gu, et al., 2024. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution. ICML’24.
[2] Ni et al., 2024. NExT: Teaching Large Language Models to Reason about Code Execution. ICML’24.
[3] Chen et al., 2024. Reasoning Runtime Behavior of a Program with LLM: How Far Are We? ICSE’25.
[4] Liu, et al., 2024. CodeMind: A Framework to Challenge Large Language Models for Code Reasoning.

from typing import List

def unique_sorted_indices(energies: List[float]) -> List[int]: # [INPUT] {"energies": [10.5, 8.2, 10.5, 7.1, 8.2]} 
[/INPUT]
  energy_dict = {}   # [STATE-0] {"energy_dict": {}} [/STATE-0]
  for idx, energy in enumerate(energies): # [STATE-1] {"idx": 0, "energy": 10.5} [/STATE-1][STATE-3] {"idx": 1, 
"energy": 8.2} [/STATE-3] ... [STATE-8] {"idx": 4, "energy": 8.2} [/STATE-8]
...
return unique_sorted_indices # [OUTPUT] [3, 1, 0] [/OUTPUT]
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SemCoder: Reasoning Comprehensive Code Semantics

Approximate

• Overall Objectives
• High-level Functionalities
• Docstring & Documentation

Symbolic

• Symbolic Logic
• Algorithms
• Control Flow

Operational

• Input Coverage
• Execution Order
• Program States Transition

Abstract

• Ignore low-level details
• Invariant Properties
• Important Attributes
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Code Semantics Learning Objective:
Monologue Reasoning

The Internet data is not the data you want for your Transformers – a nearest neighbor actually gets you 
really far, surprisingly. What you want is the inner-thought monologue of your brain. If we had billions 
of that, AGI is here, roughly speaking.

– Andrej Karpathy, 2024
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Forward Monologue

def unique_sorted_indices(energies: List[float]) 
-> List[int]:
 energy_dict = {}
 for idx, energy in enumerate(energies):
  energy_dict.setdefault(energy, idx)
 sorted_unique_energies = sorted(set(energies))
 unique_sorted_indices = [energy_dict[energy] 

for energy in sorted_unique_energies]
 return unique_sorted_indices

# Input: [10.5, 8.2, 10.5, 7.1, 8.2]
# Output: ???

Symbolic: Code Step-1: Approximate: Functionalities
The function `unique_sorted_indices` takes a list of floating-point numbers named 
`energies` as input. Its purpose is to find the indices of the unique elements in the 
input list when sorted in ascending order. Here’s how it works:
• A dictionary `energy_dict` is created to map each unique energy value to its first 

occurrence index.
• The `enumerate` function is used to iterate through the list and populate the 

dictionary with energy values as keys and their respective indices as values.
• Then, the function creates a sorted list of unique energy values from the input list 

using `sorted(set(energies))`.
• Finally, it creates a list of indices that correspond to these sorted unique 

energies using a list comprehension that retrieves the original indices from the 
dictionary.

Step-2: Abstract: Properties & 
Constraints
• The input list can contain duplicate values and is of 

variable length.
• The output list will have unique energy values sorted 

in ascending order and will contain their original 
indices from the input list.

• If an energy value is repeated, only its first 
occurrence's index is stored in the dictionary.

• The function ensures that the indices in the output 
list reflect the order of the unique values after 
sorting.

Step-3: Operational: Execution “Simulation”
1. Initialization:

 - `energy_dict` is initialized as an empty dictionary. 
2. Filling the Dictionary:

 - The `for` loop begins, iterating through the list with `enumerate`:
  - Iter 1: ..
  ...
  - Iter 5: For `idx = 4`, `energy = 8.2`. Since 8.2 already exists in the dictionary, it is not 

updated.
 Final state of `energy_dict` after the loop: `{10.5: 0, 8.2: 1, 7.1: 3}`.

3. Sorting Unique Energies:
 - The unique energies are derived and sorted, resulting in `sorted_unique_energies = [7.1, 8.2, 10.5]`.

4. Retrieving Original Indices:
 - A list comprehension retrieves the original indices corresponding to these sorted unique energies:
  - For `energy = 7.1`, the index is `3`.
  - For `energy = 8.2`, the index is `1`.
  - For `energy = 10.5`, the index is `0`.
 - Thus, `unique_sorted_indices` becomes `[3, 1, 0]`.

5. Return Statement:
 - The function returns the list `[3, 1, 0]`.[1] Hunt and Thomas, 2000. The Pragmatic Programmer: from journeyman to master
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Backward Monologue

def unique_sorted_indices(energies: List[float]) 
-> List[int]:
 energy_dict = {}
 for idx, energy in enumerate(energies):
  energy_dict.setdefault(energy, idx)
 sorted_unique_energies = sorted(set(energies))
 unique_sorted_indices = [energy_dict[energy] 

for energy in sorted_unique_energies]
 return unique_sorted_indices

# Input: ???
# Output: [3, 1, 0]

Symbolic: Code

Step-1: Approximate: Functionalities

Step-2: Abstract: Properties & 
Constraints

Step-3: Abstract & Operational: Execution “Deduction”

• The input list may contain duplicate energy 
values, but only the first occurrence's index 
will be recorded in `energy_dict`.

• The output will be ordered according to the 
sorted unique energy values.

• The length of the output list will equal the 
number of unique energy values in the input list.

- Key constraints according to the output:
 - `energy_dict` must map some unique energies to these indices.
 - The first unique energy corresponds to index `3`, the second unique to `1`, and 

the third unique to `0`.
- Energy Values:
 - Suppose the values in the `energies` list that correspond to these indices are:
  - `energies[3]` -> first unique energy (let's call it `e1`)
  - `energies[1]` -> second unique energy (let's call it `e2`)
  - `energies[0]` -> third unique energy (let's call it `e3`)

- Expected Ordering:
 - In the sorted list of unique energies, `e1` must be the smallest, followed by 

`e2`, and then `e3`.
- Choice of Values:
 - A simple set of values array can be created. We must ensure that:
  - The energy at index `3` is less than the energy at index `1` and both should 

be less than the energy at index `0`.

Let’s select:
- `energies[3] = 1.0` (first unique, smallest value)
- `energies[1] = 3.0` (second unique, middle value)
- `energies[0] = 5.0` (third unique, largest value)

To ensure proper indexing and repetition, we can fill the rest of the list with 
duplicates of such values, for instance:
```python
energies = [5.0, 3.0, 5.0, 1.0]
```
With this arrangement, we maintain the index mapping:
- `5.0` at index `0` (first occurrence),
- `3.0` at index `1` (first occurrence),
- `1.0` at index `3` (first occurrence).



8

PyX: The Dataset
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PyX: Fully Executable Dataset with Tests

Wei et al., 2024. Magicoder: Empowering Code Generation with OSS-Instruct. ICML’24.
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Monologue Annotation: Rejection Sampling

Pyx: 
- Code
- Executable Input

Pyx: 
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Joint Training: Generation and Reasoning 

Approximate

• Overall Objectives
• High-level Functionalities
• Docstring & Documentation

Symbolic

• Symbolic Logic
• Algorithms
• Control Flow

Operational

• Input Coverage
• Execution Order
• Program States Transition

Abstract

• Ignore low-level details
• Invariant Properties
• Important Attributes

Source CodeNatural Language

Implement a function that takes a list of 
potential energies, sorts them in 
ascending order, removes duplicates, and 
returns the indices of the unique sorted 
energies. 

def unique_sorted_indices(energies: List[float]) 
-> List[int]:
 energy_dict = {}
 for idx, energy in enumerate(energies):
  energy_dict.setdefault(energy, idx)
 sorted_unique_energies = sorted(set(energies))
 unique_sorted_indices = [energy_dict[energy] 
for energy in sorted_unique_energies]
 return unique_sorted_indices\

• The input list can contain duplicate values and 
is of variable length.

• The output list will have unique energy values 
sorted in ascending order and will contain their 
original indices from the input list.

• If an energy value is repeated, only its first 
occurrence's index is stored in the dictionary.

• The function ensures that the indices in the 
output list reflect the order of the unique 
values after sorting.

Sorting Unique Energies:
 The unique energies are derived and sorted, 
resulting in `sorted_unique_energies = [7.1, 8.2, 
10.5]`.
Retrieving Original Indices:
For `energy = 7.1`, the index is `3`.
For `energy = 8.2`, the index is `1`.
For `energy = 10.5`, the index is `0`.
Thus, `unique_sorted_indices` becomes `[3, 1, 0]`.
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Experiments
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Results: Code Generation
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• SemCoder shows competitive performance in code generation

[1] Jain, et al., 2024. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code.
[2] Liu et al., 2023. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
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Results: Execution Reasoning
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• SemCoder significantly outperforms in execution reasoning
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[1] Gu, et al., 2024. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution. ICML’24.
[2] Jain, et al., 2024. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code.
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Thanks!!

Pre-print: https://arxiv.org/abs/2406.01006
Model, Data, & Code: https://github.com/ARiSE-Lab/SemCoder


