
AutoManual: Constructing Instruction
Manuals by LLM Agents via Interactive

Environmental Learning
NeurIPS 2024

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, Xiaofei He

Background of LLM Agents
Large Language Models (LLM)-based Agents have shown promise in
autonomously completing tasks across various domains, e.g., device control,
games, robotics, and web navigation.

[Aug 2023] "AgentBench: Evaluating LLMs as Agents." Xiao Liu (THU) et al. arXiv.

Typical LLM Agents: Voyager

• Voyager is a LLM-powered embodied agent in Minecraft

Voyager is specifically designed for the Minecraft environment:
• Environment-specific knowledge
• Multiple demonstrations from humans
are fed into the prompts of LLM.

System Prompts of A LLM Agent

Limitations of Voyager

Agent’s Role

Valid Actions

Output Format

Extra Instructions

Human examples

This problem is widespread in ReAct-like agents:

Limitations of ReAct-like Agents

Number of Human Examples and Success rate (\%) of LLM agent methods on ALFWorld

Some work uses self-reflection or skill library to enable LLM Agents to improve
themselves.

LLM Agents Learn From Interactions

Skill library (from Voyager)

LLM Agents Learn From Interactions
However, these reflections and skills have not been well exploited to foster a deeper
understanding of the environment. As a result, directly using saved skills as in-
context examples can lead to the Path Dependence problem.

Task: put two cellphone in bed

Scenario 1

Scenario 2

Find two cellphones
at the same place

Pick and put a cellphone
Go back, pick and put

the other cellphone

Find one cellphones Pick and put a cellphone Find another cellphone

pick and put the other cellphone

AutoManual Overview
• Building stage: build rules from the interactive environment.
• Formulating stage: formulates rules into a manual.
• Testing stage: A test-time Planner agent will be evaluated with the manual.

Analysis

Rules

Code

PlanPlanner

Builder

Trajectory

Consolidator

Online Rule System
Formulator

Markdown Manual
Housekeeper Agent Manual
Overview
----, -----------, -------------
Object Interaction
Introduction
----, -------
Included Rules
rule_1: ----, -------
rule_2: ----, -------

Building Stage Formulating Stage

Testing Stage

Analysis

Generated Manual

Code

Plan
Test-time
Planner

Merge&
Delete

Categorize

Summarize

Planner

rule_system.write_rule

rule_system.update_rule

 (
type= “success process”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

Interactive Environment

Builder

Analysis

Rules

Code

Plan

Trajectory

Update Update

Rule

rule_system.write_rule

rule_system.update_rule

 (
type=“corrected error”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

...

...

AutoManual: Building Stage
Two alternating iterative processes:
• The Planner agent interacts with the environment for an episode.
• The Builder agent updates the rules through a rule system.

Analysis

Rules

Code

PlanPlanner

Builder

Trajectory

Consolidator

Online Rule System
Formulator

Markdown Manual
Housekeeper Agent Manual
Overview
----, -----------, -------------
Object Interaction
Introduction
----, -------
Included Rules
rule_1: ----, -------
rule_2: ----, -------

Building Stage Formulating Stage

Testing Stage

Analysis

Generated Manual

Code

Plan
Test-time
Planner

Merge&
Delete

Categorize

Summarize

Planner

rule_system.write_rule

rule_system.update_rule

 (
type= “success process”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

Interactive Environment

Builder

Analysis

Rules

Code

Plan

Trajectory

Update Update

Rule

rule_system.write_rule

rule_system.update_rule

 (
type=“corrected error”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

...

...

AutoManual: Planner Agent

The output of the Planner:
1. Analysis
2. Related Rules
3. Overall Plan
4. Code.

System Prompts
Related samples from skill/reflection library

Analysis: …
Related Rules:
rule_1: Ensure all receptacles are searched
Overall Plan: …

Error in [Step 3]: Cannot heat mug_1 with microwave_1

… Direct Success

Prompt: Summarize mistakes
and your code into a code block

Prompt: Reflection the failure
reason and the code segment

Mistakes and
Misunderstandings

Failure reason
Potential correction
Code error occurred when I
take the mug and try to heat:

Feedback: “Nothing
happens.”

Skill Library Reflection Library

…. Task: heat some mug and put it in cabinet.

Analysis: …
Related Rules:
rule_2: Go to the receptacle before interacting with it
Overall Plan: …

Current Rules

Result
Indirect Success Failure

…

Planner

Planner

def find_object(agent, recep_to_check, object_name):
 for receptacle in recep_to_check:
 observation = agent.go_to(receptacle)
 if object_name in observation: break

[Step 1] Search for a mug
recep_to_check = ['cabinet_1', 'cabinet_2’...]
find_object(agent, recep_to_check, 'mug')
...

[Step 3] Go to the microwave and open it if closed
observation = agent.go_to('microwave_1')
if 'closed' in observation:
 observation = agent.open('microwave_1’)
...

Feedback

Initial obs

def find_object():
 ...

[Step 1] Search mug
find_object()
...

[Step 2] Take the mug
...

[Step 3] heat mug_1
observation =
 agent.heat_with('mug_1’,
 'microwave_1')

The Trajectory

AutoManual: Planner Agent

The episodic result is
categorized into:
• Direct Success
• Indirect Success
• Failure
The Planner is prompted to
summarize the skill code or
reflection accordingly.

System Prompts
Related samples from skill/reflection library

Analysis: …
Related Rules:
rule_1: Ensure all receptacles are searched
Overall Plan: …

Error in [Step 3]: Cannot heat mug_1 with microwave_1

… Direct Success

Prompt: Summarize mistakes
and your code into a code block

Prompt: Reflection the failure
reason and the code segment

Mistakes and
Misunderstandings

Failure reason
Potential correction
Code error occurred when I
take the mug and try to heat:

Feedback: “Nothing
happens.”

Skill Library Reflection Library

…. Task: heat some mug and put it in cabinet.

Analysis: …
Related Rules:
rule_2: Go to the receptacle before interacting with it
Overall Plan: …

Current Rules

Result
Indirect Success Failure

…

Planner

Planner

def find_object(agent, recep_to_check, object_name):
 for receptacle in recep_to_check:
 observation = agent.go_to(receptacle)
 if object_name in observation: break

[Step 1] Search for a mug
recep_to_check = ['cabinet_1', 'cabinet_2’...]
find_object(agent, recep_to_check, 'mug')
...

[Step 3] Go to the microwave and open it if closed
observation = agent.go_to('microwave_1')
if 'closed' in observation:
 observation = agent.open('microwave_1’)
...

Feedback

Initial obs

def find_object():
 ...

[Step 1] Search mug
find_object()
...

[Step 2] Take the mug
...

[Step 3] heat mug_1
observation =
 agent.heat_with('mug_1’,
 'microwave_1')

The Trajectory

AutoManual: Builder Agent
Upon receiving the trajectory of the Planner, the Builder has to update the rules
through the rule system. Each rule in the rule system has four attributes:
1. Rule Type 2. Rule Content 3. Rule Example 4. Validation Logs.

Analysis

Rules

Code

PlanPlanner

Builder

Trajectory

Consolidator

Online Rule System
Formulator

Markdown Manual
Housekeeper Agent Manual
Overview
----, -----------, -------------
Object Interaction
Introduction
----, -------
Included Rules
rule_1: ----, -------
rule_2: ----, -------

Building Stage Formulating Stage

Testing Stage

Analysis

Generated Manual

Code

Plan
Test-time
Planner

Merge&
Delete

Categorize

Summarize

Planner

rule_system.write_rule

rule_system.update_rule

 (
type= “success process”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

Interactive Environment

Builder

Analysis

Rules

Code

Plan

Trajectory

Update Update

Rule

rule_system.write_rule

rule_system.update_rule

 (
type=“corrected error”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

...

...

AutoManual: Builder Agent
To mitigate the hallucinations of the Builder, we employ case-conditioned prompting:
The Builder first determines the type of the major errors, then a targeted prompt
directs the Builder to focus on specific rules.

I will write/update a
“Success Process” rule ...

Classify Prompt:
Consider each step of the
process carefully and
conclude with either
Imperfect Rules or
Imperfect Agent

Builder response:

Classify Prompt:
...
Imperfect Rules or
Imperfect Agent

Builder response:

Direct
Success

Indirect
Success

Failure

3 Possible Results 5 Possible Cases

Imperfect
Rules

Imperfect
Agent

Imperfect
Rules

Imperfect
Agent

Planner
Trajectory

I will write/update a
“Success Process” rule and
“Corrected Error”…

Builder

I will add an emphasis on
“Success Process” rule …

I will write a “Unsolved
Error” rule …

I will add an emphasis on
“Success Process” rule…

Builder

Builder

Builder

Builder

Base Prompt

Case 5 Prompt

Base Prompt

Base 4 Prompt

Base Prompt

Case 3 Prompt

Base Prompt

Case 2 Prompt

Base Prompt

Case 1 Prompt

AutoManual: Formulating Stage
• The Formulator agent categorizes the rules, summarizes the key points, and

formulates them into a manual in Markdown form.

Analysis

Rules

Code

PlanPlanner

Builder

Trajectory

Consolidator

Online Rule System
Formulator

Markdown Manual
Housekeeper Agent Manual
Overview
----, -----------, -------------
Object Interaction
Introduction
----, -------
Included Rules
rule_1: ----, -------
rule_2: ----, -------

Building Stage Formulating Stage

Testing Stage

Analysis

Generated Manual

Code

Plan
Test-time
Planner

Merge&
Delete

Categorize

Summarize

Planner

rule_system.write_rule

rule_system.update_rule

 (
type= “success process”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

Interactive Environment

Builder

Analysis

Rules

Code

Plan

Trajectory

Update Update

Rule

rule_system.write_rule

rule_system.update_rule

 (
type=“corrected error”, …)
 (...)

Potential rules: ...
Relevant existing rules: ...

...

...

Experiment: Environments
1. ALFWorld is a text-based virtual environment for the household robot.
2. MiniWoB++ is a simulated web environment where agents complete diverse tasks on

the Internet by performing keyboard and mouse actions.
3. WebArena (Reddit) is a realistic web environment by emulating the functionality and

data of Reddit website.

MiniWoB++: Simulated Web Tasks

Experiment: Results
• Building and formulating stages: all agents use GPT-4-turbo (gpt-4-1106-preview).
• Testing stage: we equip the Planner agent with GPT-4-turbo or GPT-3.5-turbo, to

evaluate whether generated manuals can guide smaller LLM.
Success rate (\%) of LLM agent methods on ALFWorld test tasks (6 task types)

Experiment: Results
Noticeably, AutoManual requires little expert prior knowledge about the environment
and is only provided with one human example to achieve excellent results.

Success rate (\%) of LLM agent methods on ALFWorld test tasks (6 task types)

Experiment: Results

The same results can be concluded for web environments: AutoManual is only
provided with one human example to achieve excellent results.

Success rate (\%) of LLM agent methods on MiniWoB++ tasks

WebArena (Reddit) tasks

Experiment: Analysis
Housekeeper Agent Interaction Manual
Overview
This manual is intended to assist the housekeeper agent in the successful execution of tasks within a simulated environment. The rules
provide guidance on navigating, searching the environment, interacting with objects, and managing task-specific processes, as well as
ensuring the correctness of actions using code assertions.

Navigation and Search

Introduction

These rules provide guidance on how to search for objects, including the use of helper methods to streamline the process and ensure
thoroughness.

Included Rules

rule_0 (type="Special Mechanism"): Objects can be found in unconventional locations, and the agent should include all possible
locations in its search. For example, In epoch_9, the agent found a soapbar on the toilet, which is an unconventional location for storing
such items.

rule_1 (type="Useful Helper Method"): If there are multiple receptacles to be search, the agent can write and use 'find_object' method
as shown in the example. For example,

Object Interaction and Location Management

Introduction

These rules inform the agent on how to interact with objects, from taking and placing items to handling multiple items of the same type.
Proper location management is crucial for successful task execution.

Included Rules

rule_2 (type="Special Phenomena"): When using a microwave, the agent can interact with it (e.g., heat an object) even if there is
another object inside, the agent is holding something, and the microwave door is not explicitly mentioned to be open.

For example, In epoch_1, the agent was able to heat the mug with the microwave even though there was an egg inside the microwave
and the agent was holding the mug.

rule_3 (type="Special Mechanism"): The agent can only hold one object at a time and must put down any held object before taking
another.

For example, In epoch_2, the agent was holding statue_4 and attempted to take statue_3 without putting down statue_4 first, resulting in
a 'Nothing happens' observation.

rule_4 (type="Success Process"): When tasked with placing multiple objects in/on a receptacle, the agent can either collect all objects
before attempting to place them or find and place them one by one, ensuring they revisit locations with multiple objects if necessary. If
all objects are found at the same location, handle them sequentially according to rule_3.

For example, In epoch_15, the agent should have revisited sidetable_1 to collect the second pencil before attempting to place it in
coffeetable_1. In epoch_23, the agent failed to collect all required statues from coffeetable_1 because it did not revisit, is also addressed
by this rule.

Define helper method to find object that is needed
def find_object(agent, recep_to_check, object_name):
 for receptacle in recep_to_check:
 observation = agent.go_to(receptacle)
 # Check if we need to open the receptacle. If we do, open it.
 if 'closed' in observation:
 observation = agent.open(receptacle)
 # Check if the object is in/on the receptacle.
 if object_name in observation:
 object_ids = get_object_with_id(observation, object_name)
 return object_ids, receptacle
 return None, None

Use assertions to validate each step
assert object_ids is not None, "Error: Could not find the object."

rule_5 (type="Special Mechanism"): The agent must interact with a receptacle to observe its contents, which includes going to the
receptacle and opening it if it is closed. Before performing a put or take action, the agent must ensure it is at the correct location. When
multiple items of the same type are present at a location, the agent may have to choose one to interact with or examine.

For example, In epoch_16, the agent had to open several closed cabinets (e.g., cabinet_1, cabinet_2) to find items such as the mug. In
epoch_21, the agent observed multiple alarm clocks on desk_1 and selected one ('alarmclock_4') to interact with.

Task-Specific Processes

Introduction

This category outlines the steps required to complete specific tasks, such as heating, cooling, and examining objects with another object's
assistance.

Included Rules

rule_6 (type="Success Process"): If the task involves cooling or heating an object before placing it, the steps are: (1) search for the object
using 'find_object' in rule_1, (2) take the object, (3) cool/heat it as required, (4) go to the target receptacle, and (5) put the object. Ensure
the agent's location and the state of the environment are updated after each action. For example,

rule_7 (type="Success Process"): When tasked with examining an object under a desklamp, the agent should first find the desklamp
and the object, ensure the desklamp is on, take the object, and then use the desklamp to examine the object. For example,

rule_8 (type="Success Process"): When tasked to look at an object under a desklamp, ensure the lamp is on before using it to examine
the object. For example,

Correctness and Validation

Introduction

Instructions on asserting code to confirm state changes and enhance the reliability of the agent's actions.

Included Rules

rule_9 (type="Corrected Error"): Assertions in the agent's code should confirm state changes such as location or held objects, rather
than rely on specific phrases in observations.

For example, Instead of asserting 'You are at' in the observation, the agent should assert the location and held object state changes. Also,
when handling multiple required objects at the same location, the agent should manage them sequentially without unnecessary
variables.

For example, to cool a mug and put it in a coffeemachine:
[Step 1] Use 'find_object' method to search all receptacles
[Step 2] Take the mug
[Step 3] Go to the fridge, open it if necessary, and cool the mug
[Step 4] Go to the coffeemachine and put the cooled mug in it

[Step 1] Use 'find_object' method to search for the desklamp and the object
[Step 2] Make sure the desklamp is on
[Step 3] Take the object
[Step 4] Use the desklamp to examine the object.

[Step 4] Go to the desklamp's location and turn it on if it's not already on
observation = agent.go_to(receptacle_with_desklamp)
observation = agent.use(found_desklamp)
assert 'turn on' in observation or 'already on' in observation, 'Error in [Step 4]: Failed to use the desklamp.'
[Step 5] Similarly, search for the alarm clock and take it.
[Step 6] With the desklamp on, examine the alarm clock using the desklamp.

The generated Markdown
manual is also friendly
for human-reading.

Experiment: Analysis
AutoManual resolves the Path Dependency problem of skills by digging deeper
into mechanisms, updating and incorporating success processes, and annotating
important details.

Housekeeper Agent Interaction Manual
Overview
This manual is intended to assist the housekeeper agent in the successful execution of tasks within a simulated environment. The rules
provide guidance on navigating, searching the environment, interacting with objects, and managing task-specific processes, as well as
ensuring the correctness of actions using code assertions.

Navigation and Search

Introduction

These rules provide guidance on how to search for objects, including the use of helper methods to streamline the process and ensure
thoroughness.

Included Rules

rule_0 (type="Special Mechanism"): Objects can be found in unconventional locations, and the agent should include all possible
locations in its search. For example, In epoch_9, the agent found a soapbar on the toilet, which is an unconventional location for storing
such items.

rule_1 (type="Useful Helper Method"): If there are multiple receptacles to be search, the agent can write and use 'find_object' method
as shown in the example. For example,

Object Interaction and Location Management

Introduction

These rules inform the agent on how to interact with objects, from taking and placing items to handling multiple items of the same type.
Proper location management is crucial for successful task execution.

Included Rules

rule_2 (type="Special Phenomena"): When using a microwave, the agent can interact with it (e.g., heat an object) even if there is
another object inside, the agent is holding something, and the microwave door is not explicitly mentioned to be open.

For example, In epoch_1, the agent was able to heat the mug with the microwave even though there was an egg inside the microwave
and the agent was holding the mug.

rule_3 (type="Special Mechanism"): The agent can only hold one object at a time and must put down any held object before taking
another.

For example, In epoch_2, the agent was holding statue_4 and attempted to take statue_3 without putting down statue_4 first, resulting in
a 'Nothing happens' observation.

rule_4 (type="Success Process"): When tasked with placing multiple objects in/on a receptacle, the agent can either collect all objects
before attempting to place them or find and place them one by one, ensuring they revisit locations with multiple objects if necessary. If
all objects are found at the same location, handle them sequentially according to rule_3.

For example, In epoch_15, the agent should have revisited sidetable_1 to collect the second pencil before attempting to place it in
coffeetable_1. In epoch_23, the agent failed to collect all required statues from coffeetable_1 because it did not revisit, is also addressed
by this rule.

Define helper method to find object that is needed
def find_object(agent, recep_to_check, object_name):
 for receptacle in recep_to_check:
 observation = agent.go_to(receptacle)
 # Check if we need to open the receptacle. If we do, open it.
 if 'closed' in observation:
 observation = agent.open(receptacle)
 # Check if the object is in/on the receptacle.
 if object_name in observation:
 object_ids = get_object_with_id(observation, object_name)
 return object_ids, receptacle
 return None, None

Use assertions to validate each step
assert object_ids is not None, "Error: Could not find the object."

Thanks for Watching!

