

Density-based User Representation using Gaussian Process Regression for Multi-interest Personalized Retrieval

Presenter: Haolun Wu*

Co-authors:

Ofer Meshi, Masrour Zoghi, Fernando Diaz, Steve Liu, Craig Boutilier, Maryam Karimzadehgan

* Work done while doing an internship at Google.

Personalization in Retrieval and Recommendation

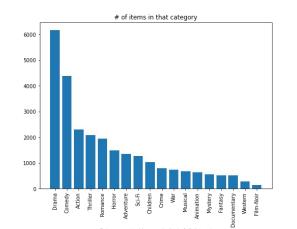
- Personalization plays an important role in user satisfaction
- Requires to capture users' multiple interests

- Challenges:
 - Users have diverse and volatile interests
 - Hard to retrieve items from niche interests

• Our goal: find good user representation that can capture multiple interests

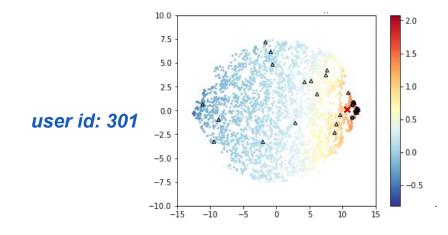


Source: Cen et al. Controllable Multi-Interest Framework for Recommendation. KDD'20.



Previous Solutions on User Representation: Point-based Representation

- Single-point User Representation (SUR)
 - Fails to cover multi-interest (unless using a very high-dimension vector)

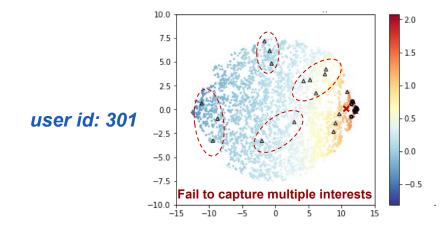


Visualization: Learned scores on all items for a user – using SUR

Dataset: MovieLens 1M Original dimension size: 64 *Reduce to dim=2 for 2D visualization*

Previous Solutions on User Representation: Point-based Representation

- Single-point User Representation (SUR)
 - Fails to cover multi-interest (unless using a very high-dimension vector)



Visualization: Learned scores on all items for a user – using SUR

Dataset: MovieLens 1M Original dimension size: 64 *Reduce to dim=2 for 2D visualization*

Previous Solutions on Multi-interest User Representation: Point-based Representation

- Multi-point User Representation (MUR)
 - How to choose # of points (*K*)?
 - Pre-define K for all users. E.g., K=4. MaxMF [RecSys'13], PolyDeepWalk [KDD'19], ComiRec [KDD'20], SINE [WSDM'21], PIMI [IJCAI'21]
 - Other heuristic rule. $K = \log_2(|\mathcal{I}_u|)$ MIND [CIKM'19]
 - Use the Ward clustering algorithm per-user. *PinnerSage* [KDD'20]
 - Does not model uncertainty.
 - $f(u, v) = \max_{k=1,\dots,K} \mathbf{u}^k \cdot \mathbf{v} \text{ MaxMF}[\text{RecSys'13}]$
 - Retrieve N items per interest. Then choose the overall top-N items. ComiRec [KDD'20], PinnerSage [KDD'20]

Previous Solutions on Multi-interest User Representation: Point-based Representation

- Single-point User Representation (SUR)
 - Fails to cover multi-interest (unless using a very high-dimension vector)
- Multi-point User Representation (MUR)
 - How to choose # of points (K)?
 - Does not model uncertainty

Main research question:

Find a better way for users' multi-interest modeling

- → Adaptive to different number of interests
- → Be able to model uncertainty
- → Not require very high-dimension

Previous Solutions on Multi-interest User Representation: Point-based Representation

- Single-point User Representation (SUR)
 - Fails to cover multi-interest (unless using a very high-dimension vector)
- Multi-point User Representation (MUR)
 - How to choose # of points (*K*)?
 - Does not model uncertainty

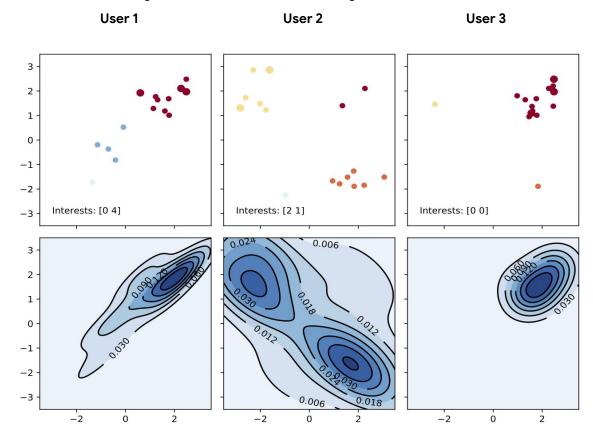
Main research question:

Find a better way for users' multi-interest modeling

- → Adaptive to different number of interests
- → Be able to model uncertainty
- → Not require very high-dimension

Address limitations of MUR

Motivation: Density-based User Representation

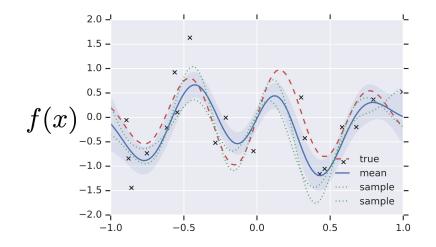


Gaussian Process Regression (GPR)

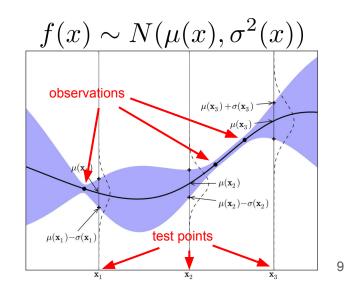
• A distribution over functions

$$f \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$$

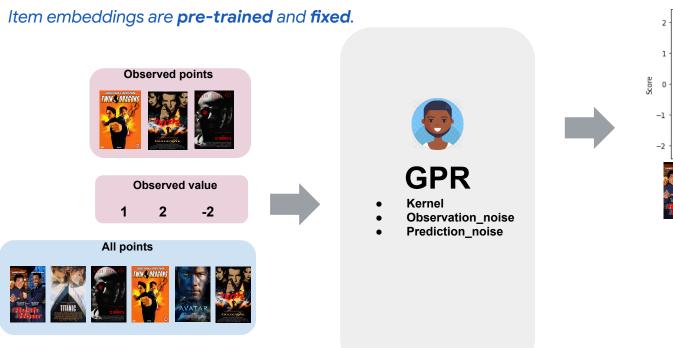
- Posterior update with observations
- Can draw samples (functions)

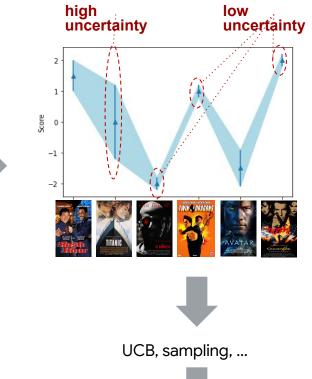


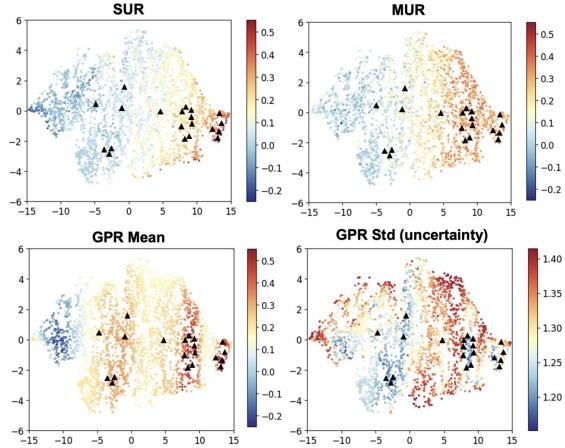
 \mathcal{X}



Toy Example: Maintain a GPR per user







Experiments

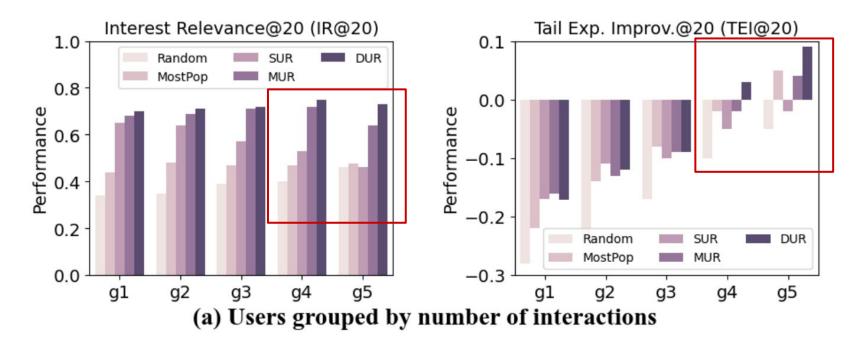
• Analysis on real-world datasets

	# User	# Item	# Interac.	Density
Amazon	6,223	32,830	4M	0.18%
MovieLens	123,002	12,532	20M	1.27%
Taobao	756,892	570,350	70M	0.01%

• Baselines:

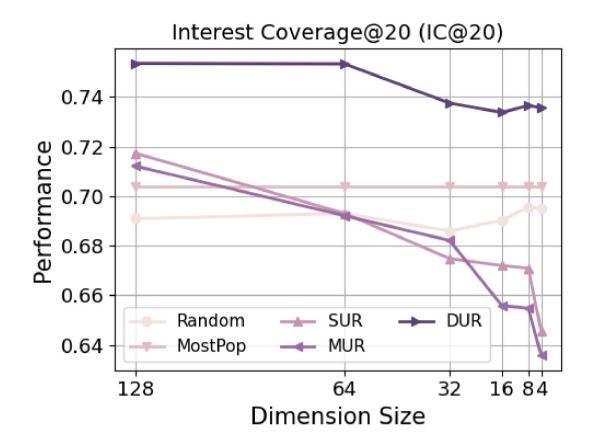
- O Heuristics: Random, MostPop
- O **SUR**: YoutubeDNN, GRU4Rec, BERT4Rec, gSASRec
- O MUR: MIND, ComiRec, CAMI, PIMI, REMI
- O **DUR**: GPR4DUR (ours)
- Evaluation Metrics:
 - O User side: (1) Interest-wise Coverage, (2) Interest-wise Relevance
 - O Item side: (1) Exposure Deviation, (2) Tail Exposure Improvement

Performance across User Groups



- → Improvement across all user groups
- → Large improvement on multi-interest users
- → Improved exposure to tail items for multi-interest users

Robustness to Dimension Size



Summary

- 1. Understand limitations of point-based user representation (SUR & MUR)
- 2. A novel density-based user representation (DUR) using GPR
 - a. improve on both retrieval and ranking
 - b. largely improve the interest coverage and maintain high relevance
 - c. reduce exposure deviation (overall + niche interests)
 - d. robust to dimension size

Thanks for your attention!

