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Personalization in Retrieval and Recommendation

● Personalization plays an important role in user satisfaction
● Requires to capture users’ multiple interests

● Challenges:
○ Users have diverse and volatile interests
○ Hard to retrieve items from niche interests

● Our goal: find good user representation that can 
capture multiple interests

Source: Cen et al. Controllable Multi-Interest 
Framework for Recommendation. KDD’20.
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Previous Solutions on User Representation: 
Point-based Representation

● Single-point User Representation (SUR)
○ Fails to cover multi-interest (unless using a very high-dimension vector)

Visualization:
Learned scores on all items for a user – using SUR

 
Dataset: MovieLens 1M
Original dimension size: 64
Reduce to dim=2 for 2D visualization
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Previous Solutions on Multi-interest User Representation: 
Point-based Representation

● Multi-point User Representation (MUR)
○ How to choose # of points (K)?

■ Pre-define K for all users. E.g., K=4. MaxMF [RecSys’13], PolyDeepWalk 
[KDD’19], ComiRec [KDD’20], SINE [WSDM’21], PIMI [IJCAI’21]

■ Other heuristic rule.                                  MIND [CIKM’19]

■ Use the Ward clustering algorithm per-user. PinnerSage [KDD’20]

○ Does not model uncertainty.
■                                     MaxMF [RecSys’13]

■ Retrieve N items per interest. Then choose the overall top-N items. 
ComiRec [KDD’20], PinnerSage [KDD’20]
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Previous Solutions on Multi-interest User Representation: 
Point-based Representation

● Single-point User Representation (SUR)
○ Fails to cover multi-interest (unless using a very high-dimension vector)

● Multi-point User Representation (MUR)
○ How to choose # of points (K)?
○ Does not model uncertainty

Main research question: 
Find a better way for users’ multi-interest modeling
➔ Adaptive to different number of interests
➔ Be able to model uncertainty
➔ Not require very high-dimension
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Address limitations of MUR

Address limitations of SUR



Motivation: Density-based User Representation
User 1 User 2 User 3
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Gaussian Process Regression (GPR)

● A distribution over functions

● Posterior update with observations
● Can draw samples (functions)

observations

test points
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GPR
● Kernel
● Observation_noise
● Prediction_noise

Toy Example: Maintain a GPR per user

Observed points

All points

Observed value

1        2         -2

high 
uncertainty

low 
uncertainty
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UCB, sampling, …

Retrieve top-N items

Item embeddings are pre-trained and fixed.



Example: 
t-sne on prediction score

P 1111



Experiments

● Analysis on real-world datasets

● Baselines:
○ Heuristics: Random, MostPop
○ SUR: YoutubeDNN, GRU4Rec, BERT4Rec, gSASRec
○ MUR: MIND, ComiRec, CAMI, PIMI, REMI
○ DUR: GPR4DUR (ours)

● Evaluation Metrics:
○ User side: (1) Interest-wise Coverage, (2) Interest-wise Relevance
○ Item side: (1) Exposure Deviation, (2) Tail Exposure Improvement
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Performance across User Groups
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➔ Improvement across all user groups
➔ Large improvement on multi-interest users
➔ Improved exposure to tail items for multi-interest users



Robustness to Dimension Size
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Summary
1. Understand limitations of point-based user representation (SUR & MUR)

2. A novel density-based user representation (DUR) using GPR
a. improve on both retrieval and ranking

b. largely improve the interest coverage and maintain high relevance

c. reduce exposure deviation (overall + niche interests)

d. robust to dimension size
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Thanks for your attention!

Join us at Poster session 1 at Wed 
11 Dec, 11 a.m. PST — 2 p.m. PST


