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Complexity of learning with gradient based algorithms on NNs

There has been a lot of interest in recent years in investigating the complexity of learning with neural networks. Which functions are 
easy? Which ones are difficult to learn? etc.

Learning Sparse Function 

A junta problem with  “relevant coordinates” out of  total coordinates of the input  corresponds to 
learning a family of distributions; 

 
 


   


                    


P d ≫ P x ∈ 𝒳d

ℋd
μ := {𝒟d

μ,s : s is  a non-repeating sequence from [P] → [d]}
 where 𝒟d

μ,s is supported on 𝒴 × 𝒳d such that 
μ := (μx, μy∣z) specifies marginal and link function respectively as below

x ∼ μd
x  and  y ∣ (xs(1), …, xs(P)) ∼ μy∣z z = (xs(1), …, xs(P)) is the "support"

Question: What is the complexity of Learning a specific problem , especially 
using (S)GD on NNs? 

e.g. linear functions are learned in  time but parities take .

μ

O(d) Ω(dP)

[Abbe et al. 23,24]
[Glassgow 24] [Edleman et al. 

19,22] & many more



Motivation
• A popular approach has been to show Correlation 
Statistical Query (CSQ) lower bound which captures 
learning with gradient queries


• For e.g [Abbe et al. 22,23] consider the special case of 
 unveiling rich hierarchical 

structure “leap complexity” and show CSQ lower 
bounds. The complexity grows as 


μd ≡ Unif({−1, + 1}d)

Ω(d𝖫𝖾𝖺𝗉(μ))

Gradient Queries: 

 
Correlation Statistical Query 

𝔼 [∇θ(y − fθ(x))2] = −2𝔼 [y∇θ fθ(x)]+2𝔼 [fθ(x)∇θ fθ(x)]

η ∝ 1/d

= iteration / d

 loss trainingℓ2

ℓ(u, y) = (u − y)2

 loss trainingℓ1

CSQ lower bound is escaped. 
Why? 

On changing the loss, the 
gradient queries 

 are more 
powerful than correlation 

queries 

∇θℓ( fθ(x), y)

Main Observation: The 
complexity of learning 

 with online SGD 
changes when we change the 

loss….

μy∣z = h*(z)

η ∝ 1/d

= iteration / d

ℓ(u, y) = |u − y |

The goals of this work is to 
characterize the loss-specific 

complexity and in much greater 
generality beyond boolean 

hypercube.



(C)SQ and Differentiable Learning Queries (DLQ)
•A -restricted SQ learner with tolerance  issues a query 

 which is  (with controlled scale) 
and receives a response  such that 


                                        


1.   (with scale controlled) 


2. 


3. of  of the form


                         


𝒬 τ
ϕ ∈ 𝒬 ⊆ L2(𝒴 × 𝒳d) ϕ : 𝒴 × 𝒳d → ℝ

v
|v−𝔼𝒟[ϕ(y, x)] | ≤ τ

𝒬𝖲𝖰 = L2(𝒴 × 𝒳d)

𝒬𝖢𝖲𝖰 ⊂ 𝒬𝖲𝖰 contains ϕ(y, x) = y ⋅ ϕ̃(x)

𝒬𝖣𝖫𝖰ℓ
⊂ 𝒬𝖲𝖰 contains  ϕ(y, x)

ϕ(y, x) =
∂

∂ω
ℓ(y, f(x, ω)) ∣ω=0 ; f : 𝒳d × ℝ → ℝ

Differentiable Learning 
Queries with loss ℓ



Main Result: Characterizing the Complexity of SQ, CSQ & DLQ
Adaptive Query Complexity

Any “adaptive” learner , with 
precision  requires  queries s.t.choosing 

𝖠 ∈ {𝖲𝖰, 𝖢𝖲𝖰, 𝖣𝖫𝖰ℓ}
τ q

q/τ2 = Ω(d𝖫𝖾𝖺𝗉𝖠(μ))

There exists a learner with with  .q/τ2 = O(d𝖫𝖾𝖺𝗉𝖠(μ))

𝖫𝖾𝖺𝗉𝖠(μ) = min
U1, …, Ur ∈ 𝒞𝖠
∪i∈[r] Ui = [P]

max
i∈[r]

Ui∖∪i−1
j=1Uj

Non-Adaptive Query Complexity

Any “non-adaptive” learner , 
with precision  requires  queries s.t.choosing 

𝖠 ∈ {𝖲𝖰, 𝖢𝖲𝖰, 𝖣𝖫𝖰ℓ}
τ q

q/τ2 = Ω(d𝖢𝗈𝗏𝖾𝗋𝖠(μ))

There exists a learner with with  .q/τ2 = O(d𝖢𝗈𝗏𝖾𝗋𝖠(μ))

𝖢𝗈𝗏𝖾𝗋𝖠(μ) = max
i∈[P]

min
i∈U,U∈𝒞𝖠

U

System of Detectable Subsets
A set , is detectable by the method , if U ∈ 𝒞𝖠 𝖠
there exists  (“the test functions set”) T(y) ∈ Ψ𝖠

And zero-mean functions   (i.e. , ,Ti 𝔼zi∼μx
[Ti(zi)] = 0 ∀i ∈ U

s.t. 𝔼z,y∼μy∣z [T(y)∏
i∈U

Ti(zi)] ≠ 0

Method Specific Test Functions Set    (Query Model Specific) :Ψ

(1)    (all squre integrable functions)Ψ𝖲𝖰 = L2(μy)

(3)   (i.e. gradient w.r.t first argument)Ψ𝖣𝖫𝖰ℓ
= {y ↦ ∂1ℓ(u, y), u ∈ ℝ}

 (2)    (just identity)Ψ𝖢𝖲𝖰 = {y ↦ y}



Other Results and Connection with SGD on NNs

Relationship between SQ, CSQ, DLQ

For classification  (like parities): SQ 
and CSQ complexities are equal.  

𝒴 = {−1, + 1}

; ;  𝒞𝖲𝖰 = 𝒞𝖢𝖲𝖰 𝖫𝖾𝖺𝗉𝖲𝖰 = 𝖫𝖾𝖺𝗉𝖢𝖲𝖰 𝖢𝗈𝗏𝖾𝗋𝖲𝖰 = 𝖢𝗈𝗏𝖾𝗋𝖢𝖲𝖰

For regression, there can be arbitrary separation.

There exists a problem  such that 
 

μ
𝖫𝖾𝖺𝗉𝖲𝖰(μ) = 1 but 𝖫𝖾𝖺𝗉𝖢𝖲𝖰(μ) = P − 1

Finally, for the squared loss, we have . 𝒞𝖣𝖫𝖰ℓ:(𝗎,𝗒)↦(𝗎−𝗒)𝟤
= 𝒞𝖢𝖲𝖰

But.., for the absolute loss, we have . 𝒞𝖣𝖫𝖰ℓ:(𝗎,𝗒)↦|𝗎−𝗒|
= 𝒞𝖲𝖰

 loss is “universal” e.g. always learns at SQ complexityℓ1

Adaptive Non-Adaptiveq/τ2 = Θ(dk*)

k* = 𝖫𝖾𝖺𝗉𝖲𝖰(μ)𝖲𝖰

𝖢𝖲𝖰

𝖣𝖫𝖰ℓ k* = 𝖫𝖾𝖺𝗉𝖣𝖫𝖰(μ)

k* = 𝖫𝖾𝖺𝗉𝖢𝖲𝖰(μ)

k* = 𝖢𝗈𝗏𝖾𝗋𝖲𝖰(μ)

k* = 𝖢𝗈𝗏𝖾𝗋𝖢𝖲𝖰(μ)
k* = 𝖢𝗈𝗏𝖾𝗋𝖣𝖫𝖰(μ)

Stochastic Gradient Descent on Neural Network:
On Hypercube  sharply characterizes what problems are 

learnable in  scaling with online SGD with a loss .  

𝖫𝖾𝖺𝗉𝖣𝖫𝖰ℓ
= 1

O(d) ℓ
Leap=1 is a.k.a. merged 
staircase property for  

loss [Abbe et al 2022]
ℓ2

• Online SGD with loss  strongly learns junta problems  in  samples/iterations.


• If , the dynamics get stuck in suboptimal saddle in  iterations.

ℓ 𝖫𝖾𝖺𝗉𝖣𝖫𝖰ℓ
= 1 O(d)

𝖫𝖾𝖺𝗉𝖣𝖫𝖰ℓ
> 1 O(d)

Do check out the paper! 
See you at the poster session!


