On the Complexity of Learning Sparse **Functions with Statistical and Gradient Queries**

Nirmit Joshi TTIC

NeurIPS 2024

Theodor Misiakiewicz TTIC—>Yale

Nati Srebro TTIC

<u>Complexity of learning with gradient based algorithms on NNs</u>

There has been a lot of interest in recent years in investigating the complexity of learning with neural networks. Which functio easy? Which ones are difficult to learn? etc.

Learning Sparse Function

 $\mu := (\mu_x, \mu_{y|z})$ specifies marginal and link function respectively as below

$$\boldsymbol{x} \sim \mu_x^d$$
 and $\boldsymbol{y} \mid (\boldsymbol{x}_{\boldsymbol{s}(1)}, \dots, \boldsymbol{x}_{\boldsymbol{s}(P)}) \sim$

Question: What is the complexity of Learning a specific problem μ , especially using (S)GD on NNs? e.g. linear functions are learned in O(d) time but parities take $\Omega(d^{P})$.

[Abbe et al. 23,24] [Glassgow 24] [Edleman et al. 19,22] & many more

A junta problem with *P* "relevant coordinates" out of $d \gg P$ total coordinates of the input $x \in \mathcal{X}^d$ corresponds to learning a family of distributions; $\mathscr{H}^d_{\mu} := \left\{ \mathscr{D}^d_{\mu,s} : s \text{ is a non-repeating sequence from } [P] \to [d] \right\}$ where $\mathscr{D}^{d}_{\mu,s}$ is supported on $\mathscr{Y} \times \mathscr{X}^{d}$ such that

 $\mu_{y|z} \ z = (x_{s(1)}, \dots, x_{s(P)})$ is the "support"

Motivation

- A popular approach has been to show Correlation Statistical Query (CSQ) lower bound which captures learning with gradient queries
- For e.g [Abbe et al. 22,23] consider the special case of $\mu^d \equiv \text{Unif}(\{-1, +1\}^d)$ unveiling rich hierarchical structure "leap complexity" and show CSQ lower bounds. The complexity grows as $\Omega(d^{\text{Leap}(\mu)})$

The goals of this work is to characterize the loss-specific **complexity** and in much greater generality beyond boolean hypercube.

Gradient Queries:

 $\mathbb{E}\left|\left|\nabla_{\theta}\left(y - f_{\theta}(\boldsymbol{x})\right)^{2}\right| = -2\mathbb{E}\left[y\nabla_{\theta}f_{\theta}(\boldsymbol{x})\right] + 2\mathbb{E}\left[f_{\theta}(\boldsymbol{x})\nabla_{\theta}f_{\theta}(\boldsymbol{x})\right]$ **Correlation Statistical Query**

Main Observation: The complexity of learning $\mu_{v|z} = h_*(z)$ with online SGD changes when we change the **OSS....**

> CSQ lower bound is escaped. Why? On changing the loss, the gradient queries $\nabla_{\theta} \ell(f_{\theta}(\mathbf{x}), \mathbf{y})$ are more powerful than correlation queries

(C)SQ and Differentiable Learning Queries (DLQ)

- •A (2)-restricted SQ learner with tolerance τ issues a query $\phi \in \mathcal{Q} \subseteq L^2(\mathcal{Y} \times \mathcal{X}^d)$ which is $\phi : \mathcal{Y} \times \mathcal{X}^d \to \mathbb{R}$ (with controlled scale) and receives a response v such that $|v - \mathbb{E}_{\mathcal{D}}[\phi(v, x)]| \leq \tau$
- 1. $Q_{SO} = L^2(\mathscr{Y} \times \mathscr{X}^d)$ (with scale controlled)
- 2. $\hat{Q}_{CSO} \subset \hat{Q}_{SO}$ contains $\phi(y, x) = y \cdot \hat{\phi}(x)$
- 3. $\mathcal{Q}_{DLQ} \subset \mathcal{Q}_{SQ}$ contains of $\phi(y, x)$ of the form $\partial \omega$

Main Result: Characterizing the Complexity of SQ, CSQ & DLQ

$$q/ au^2$$
 :

System of Detectable Subsets

A set $U \in \mathscr{C}_{A}$, is detectable by the method A, if there exists $T(y) \in \Psi_A$ ("the test functions set")

And zero-mean functions T_i (i.e. $\mathbb{E}_{z_i \sim \mu_x}[T_i(z_i)] = 0, \forall i \in U$,

s.t.
$$\mathbb{E}_{z, y \sim \mu_{y|z}} \left[T(y) \prod_{i \in U} T_i(z_i) \right] \neq 0$$

 $\operatorname{Cover}_{\mathsf{A}}(\mu) = \max_{i \in [P]} \min_{i \in U, U \in \mathscr{C}_{\mathsf{A}}} \left| U \right|$

Non-Adaptive Query Complexity

$$q/\tau$$

Any "*non-adaptive*" learner $A \in \{SQ, CSQ, DLQ_{\ell}\},\$ with precision τ requires q queries s.t.choosing $r^2 = \Omega(d^{\operatorname{Cover}_{\mathsf{A}}(\mu)})$ There exists a learner with with $q/\tau^2 = O(d^{\text{Cover}_A(\mu)})$.

Other Results and Connection with SGD on NNs

Relationship between SQ, CSQ, DLQ

For classification $\mathcal{Y} = \{-1, +1\}$ (like parities): SQ and CSQ complexities are equal.

 $\mathscr{C}_{SQ} = \mathscr{C}_{CSQ}$; Leap_{SQ} = Leap_{CSQ}; Cover_{SQ} = Cover_{CSQ}

For regression, there can be arbitrary separation.

There exists a problem μ such that Leap_{SO}(μ) = 1 but Leap_{CSO}(μ) = P - 1

Finally, for the squared loss, we have $\mathscr{C}_{\mathsf{DLQ}_{\ell:(u,y)\mapsto(u-y)^2}} = \mathscr{C}_{\mathsf{CSQ}}$.

But.., for the absolute loss, we have $\mathscr{C}_{\mathsf{DLQ}_{\ell:(u,y)\mapsto |u-y|}} = \mathscr{C}_{\mathsf{SQ}}$.

 ℓ_1 loss is "universal" e.g. always learns at SQ complexity

Stochastic Gradient Descent on Neural Network:

On Hypercube Leap_{DLQ} = 1 sharply characterizes what problems are learnable in O(d) scaling with online SGD with a loss ℓ . • Online SGD with loss ℓ strongly learns junta problems Leap_{DLQ} = 1 in O(d) samples/iterations. • If Leap_{DLQ} > 1, the dynamics get stuck in suboptimal saddle in O(d) iterations.

> Do check out the paper! See you at the poster session!

