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Sequential Assortment Selection Problem

User Website

Agent

E F G H

A B C D

I J K L

M N O P

Articles

User features
• Profile
• History

⠇

Article features
• Topic
• Category
• Trending

⠇

Recommend
Q R S T

U V W X

J SC

E H X

Assortment

• Agent recommends an assortment (a set of items)

• User chooses one item from offered multiple options
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• User chooses one item from offered multiple options



4/9

Sequential Assortment Selection Problem

• For every round t = 1, . . . , T :
1. Observe contexts xti ∈ Rd and rewards rti ∈ [0, 1] for every item i ∈ [N ]

2. Offer an assortment St = {i1, . . . , im} such that m ≤ K

3. Observe the user click decision ct ∈ St ∪ {0} (“0”: outside option)
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Multinomial Logit (MNL) Choice Model (McFadden, 1977)

• Probability of choosing any item i in assortment St:

pt(i|St,w
⋆) :=

exp(x⊤
tiw

⋆)

1+
∑

j∈St
exp(x⊤

tjw
⋆)

Here, w⋆ ∈ Rd is an unknown parameter

• Expected revenue of the assortment S:

Rt(S,w
⋆) :=

∑
i∈S

pt(i|S,w⋆)rti =

∑
i∈S exp(x⊤

tiw
⋆)rti

1+
∑

j∈S exp(x⊤
tjw

⋆)

• Optimal assortment: S⋆
t = argmaxS∈S Rt(S,w

⋆)

• Goal: Minimize RegT (w
⋆) =

∑T
t=1 Rt(S

⋆
t ,w

⋆)−Rt(St,w
⋆)
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Definitions

• Uniform reward: All items have the same reward (WLOG let rti = 1).

• Non-uniform reward: At every round t, reward rti for each item i is
given arbitrarily.

• Problem-dependent constant κ:

κ := min
t∈[T ]

min
S∈S

min
w∈W

pt(i|S,w)pt(0|S,w),

where W := {w ∈ Rd | ∥w∥2 ≤ 1}. Note that 1/κ = O(K2).
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Previous Works

Table. T : total rounds, d: feature dimension, K: maximum assortment size, 1/κ = O(K2).

Regret Rewards Comput. per Round

Lower
Bound

Chen et al. (2020) Ω( 1
K
d
√
T ) Uniform −

This work Ω( 1√
K
d
√
T ) Uniform −

This work Ω(d
√
T ) Non-uniform −

Upper
Bound

Oh and Iyengar (2019) Õ( 1
κ
d3/2

√
T ) Non-uniform O(t)

Chen et al. (2020) Õ(d
√
T ) Non-uniform Intractable

Oh and Iyengar (2021) Õ( 1
κ
d
√
T ) Non-uniform O(t)

Perivier and Goyal (2022) Õ(d
√
KT ) Uniform Intractable

This work Õ( 1√
K
d
√
T ) Uniform O(1)

This work Õ(d
√
T ) Non-uniform O(1)

1. No minimax result!

2. No lower bound under non-uniform rewards

3. No computationally efficient algorithm
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κ
d
√
T ) Non-uniform O(t)

Perivier and Goyal (2022) Õ(d
√
KT ) Uniform Intractable

This work Õ( 1√
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Main Contributions
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K
d
√
T ) Uniform O(1)

This work Õ(d
√
T ) Non-uniform O(1)

1. Close gap between upper and lower bounds:
▶ Uniform rewards: K ↑ =⇒ RegT ↓

▶ Non-uniform rewards: RegT is NOT affected by K

2. First lower bound for non-uniform rewards

3. Propose computationally efficient, nearly minimax optimal algorithm
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κ
d3/2

√
T ) Non-uniform O(t)

Chen et al. (2020) Õ(d
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