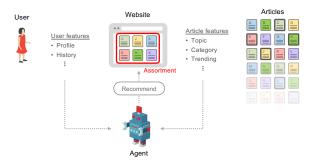
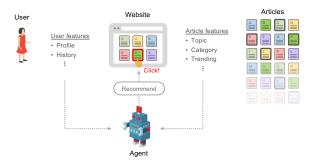
Nearly Minimax Optimal Regret for Multinomial Logistic Bandit (NeurIPS 2024)

Joongkyu Lee & Min-hwan Oh

Seoul National University



- Agent recommends an assortment (a set of items)
- User chooses one item from offered multiple options



- Agent recommends an assortment (a set of items)
- User chooses one item from offered multiple options

• For every round $t = 1, \ldots, T$:

1. Observe contexts $x_{ti} \in \mathbb{R}^d$ and rewards $r_{ti} \in [0, 1]$ for every item $i \in [N]$

• For every round $t = 1, \ldots, T$:

- 1. Observe contexts $x_{ti} \in \mathbb{R}^d$ and rewards $r_{ti} \in [0, 1]$ for every item $i \in [N]$
- 2. Offer an assortment $S_t = \{i_1, \ldots, i_m\}$ such that $m \leq K$

- For every round $t = 1, \ldots, T$:
 - 1. Observe contexts $x_{ti} \in \mathbb{R}^d$ and rewards $r_{ti} \in [0, 1]$ for every item $i \in [N]$
 - 2. Offer an assortment $S_t = \{i_1, \ldots, i_m\}$ such that $m \leq K$
 - 3. Observe the user click decision $c_t \in S_t \cup \{0\}$ ("0": outside option)

• Probability of choosing any item *i* in assortment *S_t*:

$$p_t(i|S_t, \mathbf{w}^{\star}) := \frac{\exp(x_{ti}^{\top} \mathbf{w}^{\star})}{1 + \sum_{j \in S_t} \exp(x_{tj}^{\top} \mathbf{w}^{\star})}$$

Here, $\mathbf{w}^{\star} \in \mathbb{R}^{d}$ is an <u>unknown</u> parameter

• Probability of choosing any item *i* in assortment *S_t*:

$$p_t(i|S_t, \mathbf{w}^{\star}) := \frac{\exp(x_{ti}^{\top} \mathbf{w}^{\star})}{1 + \sum_{j \in S_t} \exp(x_{tj}^{\top} \mathbf{w}^{\star})}$$

Here, $\mathbf{w}^{\star} \in \mathbb{R}^{d}$ is an <u>unknown</u> parameter

• Expected revenue of the assortment *S*:

$$R_t(S, \mathbf{w}^{\star}) := \sum_{i \in S} p_t(i|S, \mathbf{w}^{\star}) r_{ti} = \frac{\sum_{i \in S} \exp(x_{ti}^{\top} \mathbf{w}^{\star}) r_{ti}}{1 + \sum_{j \in S} \exp(x_{tj}^{\top} \mathbf{w}^{\star})}$$

• Probability of choosing any item *i* in assortment *S_t*:

$$p_t(i|S_t, \mathbf{w}^{\star}) := \frac{\exp(x_{ti}^{\top} \mathbf{w}^{\star})}{1 + \sum_{j \in S_t} \exp(x_{tj}^{\top} \mathbf{w}^{\star})}$$

Here, $\mathbf{w}^{\star} \in \mathbb{R}^{d}$ is an <u>unknown</u> parameter

• Expected revenue of the assortment *S*:

$$R_t(S, \mathbf{w}^{\star}) := \sum_{i \in S} p_t(i|S, \mathbf{w}^{\star}) r_{ti} = \frac{\sum_{i \in S} \exp(x_{ti}^{\top} \mathbf{w}^{\star}) r_{ti}}{1 + \sum_{j \in S} \exp(x_{tj}^{\top} \mathbf{w}^{\star})}$$

• Optimal assortment: $S_t^{\star} = \arg \max_{S \in \mathcal{S}} R_t(S, \mathbf{w}^{\star})$

• Probability of choosing any item *i* in assortment *S_t*:

$$p_t(i|S_t, \mathbf{w}^{\star}) := \frac{\exp(x_{ti}^{\top} \mathbf{w}^{\star})}{1 + \sum_{j \in S_t} \exp(x_{tj}^{\top} \mathbf{w}^{\star})}$$

Here, $\mathbf{w}^{\star} \in \mathbb{R}^{d}$ is an <u>unknown</u> parameter

• Expected revenue of the assortment *S*:

$$R_t(S, \mathbf{w}^{\star}) := \sum_{i \in S} p_t(i|S, \mathbf{w}^{\star}) r_{ti} = \frac{\sum_{i \in S} \exp(x_{ti}^{\top} \mathbf{w}^{\star}) r_{ti}}{1 + \sum_{j \in S} \exp(x_{tj}^{\top} \mathbf{w}^{\star})}$$

• Optimal assortment: $S_t^{\star} = \arg \max_{S \in \mathcal{S}} R_t(S, \mathbf{w}^{\star})$

• Goal: Minimize $\operatorname{Reg}_T(\mathbf{w}^{\star}) = \sum_{t=1}^T R_t(S_t^{\star}, \mathbf{w}^{\star}) - R_t(S_t, \mathbf{w}^{\star})$

Definitions

- **Uniform reward**: All items have the <u>same reward</u> (WLOG let $r_{ti} = 1$).
- **Non-uniform reward**: At every round *t*, reward *r*_{ti} for each item *i* is given arbitrarily.

Definitions

- **Uniform reward**: All items have the <u>same reward</u> (WLOG let $r_{ti} = 1$).
- **Non-uniform reward**: At every round *t*, reward *r*_{ti} for each item *i* is given arbitrarily.
- Problem-dependent constant κ:

 $\kappa := \min_{t \in [T]} \min_{S \in \mathcal{S}} \min_{\mathbf{w} \in \mathcal{W}} p_t(i|S, \mathbf{w}) p_t(0|S, \mathbf{w}),$

where $\mathcal{W} := \{ \mathbf{w} \in \mathbb{R}^d \mid \|\mathbf{w}\|_2 \le 1 \}$. Note that $1/\kappa = \mathcal{O}(K^2)$.

Previous Works

		Regret	Rewards	Comput. per Round
Lower Bound	Chen et al. (2020)	$\Omega(\frac{1}{K}d\sqrt{T})$	Uniform	-
Upper Bound	Oh and Iyengar (2019) Chen et al. (2020) Oh and Iyengar (2021) Perivier and Goyal (2022)	$\begin{array}{c} \widetilde{\mathcal{O}}(\frac{1}{\kappa}d^{3/2}\sqrt{T})\\ \widetilde{\mathcal{O}}(d\sqrt{T})\\ \widetilde{\mathcal{O}}(\frac{1}{\kappa}d\sqrt{T})\\ \widetilde{\mathcal{O}}(d\sqrt{KT}) \end{array}$	Non-uniform Non-uniform Non-uniform Uniform	$egin{array}{c} \mathcal{O}(t) \ ext{Intractable} \ \mathcal{O}(t) \ ext{Intractable} \ ext{Intractable} \ ext{Intractable} \end{array}$

Table. *T*: total rounds, *d*: feature dimension, *K*: maximum assortment size, $1/\kappa = \mathcal{O}(K^2)$.

1. No minimax result!

Previous Works

		Regret	Rewards	Comput. per Round
Lower Bound	Chen et al. (2020)	$\Omega(\frac{1}{K}d\sqrt{T})$	Uniform	-
Upper Bound	Oh and Iyengar (2019) Chen et al. (2020) Oh and Iyengar (2021) Perivier and Goyal (2022)	$\begin{array}{c} \widetilde{\mathcal{O}}(\frac{1}{\kappa}d^{3/2}\sqrt{T})\\ \widetilde{\mathcal{O}}(d\sqrt{T})\\ \widetilde{\mathcal{O}}(\frac{1}{\kappa}d\sqrt{T})\\ \widetilde{\mathcal{O}}(d\sqrt{KT}) \end{array}$	Non-uniform Non-uniform Non-uniform Uniform	$egin{array}{c} \mathcal{O}(t) \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $

Table. T: total rounds, d: feature dimension, K: maximum assortment size, $1/\kappa = \mathcal{O}(K^2)$.

1. No minimax result!

2. No lower bound under non-uniform rewards

Previous Works

		Regret	Rewards	Comput. per Round
Lower Bound	Chen et al. (2020)	$\Omega(\frac{1}{K}d\sqrt{T})$	Uniform	_
Upper Bound	Oh and Iyengar (2019) Chen et al. (2020) Oh and Iyengar (2021) Perivier and Goyal (2022)	$\begin{array}{c} \widetilde{\mathcal{O}}(\frac{1}{\kappa}d^{3/2}\sqrt{T})\\ \widetilde{\mathcal{O}}(d\sqrt{T})\\ \widetilde{\mathcal{O}}(\frac{1}{\kappa}d\sqrt{T})\\ \widetilde{\mathcal{O}}(d\sqrt{KT}) \end{array}$	Non-uniform Non-uniform Non-uniform Uniform	$egin{array}{c} \mathcal{O}(t) \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $

Table. *T*: total rounds, *d*: feature dimension, *K*: maximum assortment size, $1/\kappa = \mathcal{O}(K^2)$.

- 1. No minimax result!
- 2. No lower bound under non-uniform rewards
- 3. No computationally efficient algorithm

		,		
		Regret	Rewards	Comput. per Round
Lower	Chen et al. (2020)	$\Omega(\frac{1}{K}d\sqrt{T})$	Uniform	_
Bound	This work	$\Omega(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	-
	Oh and Iyengar (2019)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d^{3/2}\sqrt{T})$	Non-uniform	$\mathcal{O}(t)$
	Chen et al. (2020)	$\widetilde{\mathcal{O}}(d\sqrt{T})$	Non-uniform	Intractable
Upper	Oh and Iyengar (2021)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d\sqrt{T})$	Non-uniform	$\mathcal{O}(t)$
Bound	Perivier and Goyal (2022)	$\widetilde{\mathcal{O}}(d\sqrt{KT})$	Uniform	Intractable
	This work	$\widetilde{\mathcal{O}}(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	$\mathcal{O}(1)$

Table. T: total rounds, d: feature dimension, K: maximum assortment size, $1/\kappa = \mathcal{O}(K^2)$.

- 1. Close gap between upper and lower bounds:
 - Uniform rewards: $K \uparrow \Longrightarrow \operatorname{Reg}_T \downarrow$

		Regret	Rewards	Comput. per Round
T	Chen et al. (2020)	$\Omega(\frac{1}{K}d\sqrt{T})$	Uniform	_
Lower Bound	This work	$\Omega(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	_
Doulia	This work	$\Omega(d\sqrt{T})$	Non-uniform	_
Upper Bound	Oh and Iyengar (2019)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d^{3/2}\sqrt{T})$	Non-uniform	O(t)
	Chen et al. (2020)	$\widetilde{\mathcal{O}}(d\sqrt{T})$	Non-uniform	Intractable
	Oh and Iyengar (2021)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d\sqrt{T})$	Non-uniform	$\mathcal{O}(t)$
	Perivier and Goyal (2022)	$\widetilde{\mathcal{O}}(d\sqrt{KT})$	Uniform	Intractable
	This work	$\widetilde{\mathcal{O}}(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	$\mathcal{O}(1)$
	This work	$\widetilde{\mathcal{O}}(d\sqrt{T})$	Non-uniform	$\mathcal{O}(1)$

Table. *T*: total rounds, *d*: feature dimension, *K*: maximum assortment size, $1/\kappa = \mathcal{O}(K^2)$.

- 1. Close gap between upper and lower bounds:
 - Uniform rewards: $K \uparrow \Longrightarrow \operatorname{Reg}_T \downarrow$
 - Non-uniform rewards: Reg_T is NOT affected by K

		D	D 1	
		Regret	Rewards	Comput. per Round
Lower	Chen et al. (2020)	$\Omega(\frac{1}{K}d\sqrt{T})$	Uniform	-
Bound	This work	$\Omega(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	-
Dound	This work	$\Omega(d\sqrt{T})$	Non-uniform	-
Upper Bound	Oh and Iyengar (2019)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d^{3/2}\sqrt{T})$	Non-uniform	$\mathcal{O}(t)$
	Chen et al. (2020)	$\widetilde{O}(d\sqrt{T})$	Non-uniform	Intractable
	Oh and Iyengar (2021)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d\sqrt{T})$	Non-uniform	$\mathcal{O}(t)$
	Perivier and Goyal (2022)	$\widetilde{\mathcal{O}}(d\sqrt{KT})$	Uniform	Intractable
	This work	$\widetilde{\mathcal{O}}(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	$\mathcal{O}(1)$
	This work	$\widetilde{\mathcal{O}}(d\sqrt{T})$	Non-uniform	$\mathcal{O}(1)$

Table. *T*: total rounds, *d*: feature dimension, *K*: maximum assortment size, $1/\kappa = \mathcal{O}(K^2)$.

- 1. Close gap between upper and lower bounds:
 - Uniform rewards: $K \uparrow \Longrightarrow \operatorname{Reg}_T \downarrow$
 - Non-uniform rewards: Reg_T is NOT affected by K
- 2. First lower bound for non-uniform rewards

		Regret	Rewards	Comput. per Round
-	Chen et al. (2020)	$\Omega(\frac{1}{K}d\sqrt{T})$	Uniform	_
Lower Bound	This work	$\Omega(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	_
Doulia	This work	$\Omega(d\sqrt{T})$	Non-uniform	_
Upper Bound	Oh and Iyengar (2019)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d^{3/2}\sqrt{T})$	Non-uniform	O(t)
	Chen et al. (2020)	$\widetilde{\mathcal{O}}(d\sqrt{T})$	Non-uniform	Intractable
	Oh and Iyengar (2021)	$\widetilde{\mathcal{O}}(\frac{1}{\kappa}d\sqrt{T})$	Non-uniform	$\mathcal{O}(t)$
	Perivier and Goyal (2022)	$\widetilde{\mathcal{O}}(d\sqrt{KT})$	Uniform	Intractable
	This work	$\widetilde{\mathcal{O}}(\frac{1}{\sqrt{K}}d\sqrt{T})$	Uniform	$\mathcal{O}(1)$
	This work	$\widetilde{\mathcal{O}}(d\sqrt{T})$	Non-uniform	$\mathcal{O}(1)$

Table. *T*: total rounds, *d*: feature dimension, *K*: maximum assortment size, $1/\kappa = \mathcal{O}(K^2)$.

- 1. Close gap between upper and lower bounds:
 - Uniform rewards: $K \uparrow \Longrightarrow \operatorname{Reg}_T \downarrow$
 - Non-uniform rewards: Reg_T is NOT affected by K
- 2. First lower bound for non-uniform rewards
- 3. Propose computationally efficient, nearly minimax optimal algorithm

References I

- Chen, X., Wang, Y., and Zhou, Y. (2020). Dynamic assortment optimization with changing contextual information. <u>The Journal of</u> Machine Learning Research, 21(1):8918–8961.
- McFadden, D. (1977). Modelling the choice of residential location.
- Oh, M.-h. and Iyengar, G. (2019). Thompson sampling for multinomial logit contextual bandits. <u>Advances in Neural Information</u> Processing Systems, 32.
- Oh, M.-h. and Iyengar, G. (2021). Multinomial logit contextual bandits: Provable optimality and practicality. In <u>Proceedings of the</u> AAAI Conference on Artificial Intelligence, volume 35, pages 9205–9213.
- Perivier, N. and Goyal, V. (2022). Dynamic pricing and assortment under a contextual mnl demand. <u>Advances in Neural Information</u> Processing Systems, 35:3461–3474.