

MoE Jetpack: From Dense Checkpoints to Adaptive Mixture of Experts for Vision Tasks

Xingkui Zhu*, Yiran Guan*, Dingkang Liang, Yuchao Chen,

Yuliang Liu, Xiang Bai

Huazhong University of Science and Technology

© Copyright Huazhong University of Science and Technology. All Rights Reserved.

Background

What is Mixture of Experts (MoE)?

MoE architecture comprises:

- Densely activated layers
- Routers + Sparsely activated MoE layers

Why MoE?

Advantages:

Scalability: Allows model scaling with minimal

increase in inference cost (FLOPs).

Efficiency: Achieves faster training and

inference compared to dense models with

similar parameter counts.

Performance: Delivers improved performance at similar inference speeds to dense models.

Motivation

How to maximize the use of **dense checkpoints** to enhance the accuracy and convergence speed of **MoE models** during fine-tuning?

MoE Jetpack

Our MoE Jetpack leverages dense checkpoints to bypass the MoE pre-training phase,

capitalizing on sunk pre-training costs to achieve faster convergence and enhanced performance.

Highlights:

- > Stronger performance.
- > Faster Convergence.
- > Robust generalization.
- > Running Efficiency.

Method Overview

MoE Jetpack is a framework that fine-tunes pre-trained dense models into Mixture of Experts with:

a) Checkpoint Recycling and b) SpheroMoE Layers which contain c) Adaptive Dual-path.

Method

1 Checkpoints recycling

- Random
- Uniform
- ♦ L2
- Co-Activation Graph Split

Unlike existing methods that simply replicate the Feed-Forward Network (FFN) to construct MoE, our approach employs **importance sampling** to select **diverse experts** with **varying sizes**, enabling more effective MoE weight initialization.

Method

2 SpheroMoE Layers

- Hypersphere projection
- Learnable SoftMax temperature
- MoE regularization

SpheroMoE Layers employ cross-attention to reorganize input tokens into slots for expert processing. It's a continuous, fully differentiable routing mechanism based on Soft MoE.

Method

3 Adaptive Dual-path

The dual-path structure directs **important tokens** to **large core experts** and routes less critical tokens to smaller, numerous experts, enhancing efficiency without losing performance.

The MoE Jetpack, benefiting from the pre-trained knowledge embedded in dense checkpoints, **consistently surpasses** the performance of both Soft MoE models trained from scratch and dense models with ImageNet-21K initialization.

Dataset (\downarrow)	Dense	Dense (21k)	Soft MoE [6]	MoE Jetpack	Dense	Dense (21k)	Soft MoE [6]	MoE Jetpack
ImgNet-1k	73.9	75.6	77.1	79.9(+2.8)	76.1	76.4	79.1	80.5 (+1.4)
Food-101	79.6	86.9	82.0	89.5 (+7.5)	86.9	89.0	88.7	90.7(+2.0)
CIFAR-10	92.4	97.0	92.9	$97.9 \ (+5.0)$	96.6	97.4	97.3	98.2 (+0.9)
CIFAR-100	72.3	81.4	75.9	88.4 (+12.5)	81.4	84.4	82.8	88.5 (+5.7)
STL-10	61.5	83.4	67.7	95.3 (+27.6)	81.4	92.3	79.4	98.7 (+19.3)
Flowers	62.4	81.9	70.8	$95.4 \ (+24.6)$	80.3	94.5	83.3	98.6 (+15.3)
Pets	25.0	68.6	45.5	84.3 (+38.8)	72.9	87.3	77.4	94.9 (+17.5)
DTD	49.4	62.5	51.3	69.1 (+17.8)	63.7	68.8	64.7	79.5 (+14.8)
ViT				ConvNeXt				

Performance comparison on visual recognition tasks.

Experiments

			I	I		
Soft MoE [6]	Checkpoints Recycling	SpheroMoE	ImageNet	CIFAR-100	Flowers	Mean Acc.
	Baseline ViT-T		73.9	72.3	62.4	69.5
\checkmark			77.1	75.9	70.8	74.6(+5.1)
\checkmark	\checkmark	\checkmark	$\begin{array}{c} 78.4 \\ 79.9 \end{array}$	84.7 88.4	$\begin{array}{c} 91.2\\ 95.4\end{array}$	84.8 (+15.3) $87.9 (+18.4)$

Ablation study on MoE Jetpack Components.

Ablation study on Checkpoint Recycling Methods.

Method	Construction	ImageNet
Sparse Upcycling [16]	Сору	79.1
Checkpoint Recycling	Random Sampling Uniform Selection Graph Partitioning Importance-based Sampling	79.5 79.6 79.8 79.9

Ablation study on Core Expert Ratio.

model	Weight Init.	MoE Layers	Expert Number	Param (M)	FLOPs (G)	CIFAR-100	ImageNet
ViT-T	-	-	-	6	1.1	72.3	73.9
Soft MoE-T [6]	-	7:12	197	354	1.2	75.9	77.1
Soft MoE-S [6]	-	7:12	197	1412	4.5	77.5	80.3
ViT-T	✓	-	-	6	1.1	81.4	75.5
V-JetMoE-T	\checkmark	11:12	core: 98, univ: 196	92	1.1	87.4	-
V-JetMoE-T	\checkmark	9:12	core: 98, univ: 196	179	1.1	87.8	-
V-JetMoE-T	✓	5:12	core: 98, univ: 196	352	1.2	86.7	-
V-JetMoE-T	✓	7:12	core: 32, univ: 64	89	0.8	87.8	-
V-JetMoE-T	✓	7:12	core: 64, univ: 128	175	1.0	88.0	-
V-JetMoE-T	✓	7:12	core: 98, univ: 196	265	1.1	88.4	79.9
V-JetMoE-S	✓	7:12	core: 98, univ: 196	1058	4.3	89.9	82.4

Comparison of Model Variants with Different Configurations

Experiments

Conclusion

MoE Jetpack: From Dense Checkpoints to Adaptive Mixture of Experts for Vision Tasks

- Checkpoint recycling: Pioneers the sampling of dense checkpoints to initialize MoE experts, enhancing initialization flexibility, diversifying experts, and eliminating thecomputational burden of MoE pre-training.
- SpheroMoE layer: Optimized for fine-tuning dense checkpoints into MoE architectures,

alleviating optimization challenges, and preventing the over-specialization of experts.

THANK YOU

Code & Models

Xingkui Zhu

https://github.com/Adlith/MoE-Jetpack