Cherry on Top: Parameter Heterogeneity and Quantization in Large Language Models

Wanyun Cui and Qianle Wang

Shanghai University of Finance and Economics

1 The (unexpected) high robustness of LLMs to quantization

2 Parameter Heterogeneity Phenomenon

3 Experiments

The (unexpected) high robustness of LLMs to quantization

What is quantization?

Reduction of 32/16-bit models to low-bit counterparts

> Despite the extreme low bits in quantized models, what causes the high robustness of LLMs to quantization?

Full precision	FP16	3.32
4-bit precision	RTN	3.46(+0.14)
	GPTQ	3.42(+0.10)
	AWQ	3.41 (+0.09)
	No sia	nificant parformance degradat

erplexity of Different uantization Methods LLaMA-2-70B

No significant performance degradation

Parameter Heterogeneity Phenomenon

Heterogeneity can explain

> Heterogeneity is not an isolated case!

The significant variation in the influence of quantization on different parameters

Heterogeneity can explain

> Why LLMs are tolerant of quantization?

For the vast majority (> 99%) of parameters, the effect of their quantization to the model are minimal and can thus be alleviated or ignored

> Why is mixed-precision quantization effective?

By preserving a small proportion of parameters with high precision, the quantization performance can be effectively improved

< 1%

What is the best *Cherry* parameter selection strategy?

> Weight-based strategy

> Activation-based strategy

> Impact-based strategy Impact(w_i) = L($w_i + \Delta w$) - L(w_i)

Impact > Activation > Weight?

Effective strategy should exhibit high heterogeneity that differentiates the influence of cherry parameters and normal parameters of the model!

[1] Kim, Sehoon, et al. Forty-first International Conference on Machine Learning[2] Lin, Ji, et al. Proceedings of Machine Learning and Systems 6 (2024): 87-100

What is the best *Cherry* parameter selection strategy?

> Based on *heterogeneity score*, what is the best strategy?

Heterogeneity Score(f) =
$$\frac{\text{Mean}(f(w_i)_{\text{top1\%}})}{\text{Max}(f(w_i)_{\text{bottom1\%}})}$$

The *Impact* metric better distinguishes between the normal and cherry parameters, thus the best Cherry parameter selection strategy! How to quantize parameters according to parameter heterogeneity?

- > CherryQ: End-to-End Mixed Precision Quantization
 - > Cherry parameters are updated using standard gradient descent
 - > Normal parameters employ the Straight-Through Estimator (STE) trick for low-precision gradient descent

Algorithm 1 Cherry Parameter and Quantization-aware Training (CherryQ) **Require:** Model parameters W, quantization function $Quant(\cdot)$, threshold τ , learning rate η **Ensure:** Quantized model parameters 1: $\mathbf{C} \leftarrow \{ w_i \in \mathbf{W} \mid H_{ii} > \tau \}$ \triangleright Identify cherry parameters 2: $\mathbf{N} \leftarrow \mathbf{W} \setminus \mathbf{C}$ \triangleright Identify normal parameters 3: for each training batch x do $L \leftarrow \text{model}(x; \mathbf{C} \cup Quant(\mathbf{N}))$ \triangleright Compute loss 4: $\mathbf{C} \leftarrow \mathbf{C} - \eta \frac{\partial L}{\partial \mathbf{C}}$ \triangleright Standard gradient descent 5: $\mathbf{N} \leftarrow \mathbf{N} - \eta \cdot \mathrm{STE}(\frac{\partial L}{\partial \mathbf{N}})$

▷ Gradient descent with gradient approximation by STE

7: end for

6:

8: return $\mathbf{C} \cup Quant(\mathbf{N})$

[1] Liu, Zechun, et al. arXiv preprint arXiv:2305.17888 (2023).

Cherry on Top: Parameter Heterogeneity and Quantization in Large Language Models

Experiments

Cherry on Top: Parameter Heterogeneity and Quantization in Large Language Models

3/4-bit quantization experiment

> Perplexity results

Method	Avg.	7B-3t	oit-g128	Avg.	7B-31	bit-g64	Avg.	13B-3	bit-g128	Avg.	13B-3	8bit-g64
	bit	c4	wiki2	bit	c4	wiki2	bit	c4	wiki2	bit	c4	wiki2
FP16	16	6.97	5.47	16	6.97	5.47	16	6.47	4.88	16	6.47	4.88
QAT	3.13	9.25	6.90	3.25	8.74	7.13	3.13	7.19	5.63	3.25	7.02	5.48
GPTQ	3.15	8.28	6.74	3.30	8.20	6.62	3.15	7.24	5.63	3.30	7.10	5.56
AWQ	3.15	7.84	6.24	-	-	-	3.15	6.94	5.32	-	-	-
OmniQuant	3.15	7.75	6.03	-	-	-	3.15	6.98	5.28	-	-	-
SqueezeLLM	-	-	-	3.24	7.51	5.96	-	-	-	3.24	6.82	5.23
CherryQ	3.17	7.39	5.93	3.30	7.34	5.87	3.17	6.80	5.26	3.29	6.76	5.21

Perplexity (\downarrow) of 3-bit quantization on LLaMA2 models. gX means the group size is X

CherryQ consistently outperforms all other approaches across both model sizes (7B and 13B) and grouping sizes (64 and 128), achieving the lowest perplexity on both the C4 and WikiText-2 datasets

3/4-bit quantization experiment

Effect of Chat LLM Quantization

Comparison of 3-bit quantized models to FP16 Vicuna-1.5 (Left) Comparisons to Vicuna1.5-7B (Right) Comparisons to Vicuna-1.5-13B CherryQ even shows competitive quality compared to the 16-bit counterpart

2-bit quantization experiment

> Perplexity results

Method	LLaMA2-7B-2bit		LLaMA2-13B-2bit		
	c4	wiki2	c4	wiki2	
FP16	6.97	5.47	6.47	4.88	
GPTQ-g64	19.40	20.85	12.48	22.44	
AWQ-g64	$> 10^{5}$	$> 10^{5}$	$> 10^{4}$	$> 10^{5}$	
OmniQuant-g64	12.72	9.62	10.05	7.56	
CherryQ-g64	9.08	7.84	8.02	6.72	
FP16	6.97	5.47	6.47	4.88	
GPTQ-g128	33.70	36.77	20.97	28.14	
AWQ-g128	$> 10^{5}$	$> 10^{5}$	$> 10^{4}$	$> 10^{5}$	
OmniQuant-g128	15.02	11.06	11.05	8.26	
CherryQ-g128	9.55	8.34	8.40	7.20	

Perplexity (1) of 2-bit quantization on LLaMA2 models

Compared to existing methods such as GPTQ, AWQ, and OmniQuant, our proposed CherryQ method demonstrates superior performance across all metrics

Thanks!