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Lifelong Reinforcement Learning 

In the lifelong setting, an agent is always adapting to new tasks or distribution shifts

… … …

Task: walk shift 1 shift 2 shift 3



Procgen

- similar, but different reward 
functions, transitions, 
obstacles, dynamics…

L1 L2 L3 L4 …LN



Loss of plasticity arises from adapting to a strictly ordered sequence of 
tasks 



Procgen



Lifelong RL Suffers from Loss of Plasticity 

● At every new 
distribution shift (level), 
our ability to learn is 
less (less reward 
obtainable)

● Eventually, we are not 
able to adapt at all

● AKA: negative transfer, 
primacy bias, capacity 
loss  



Lifelong RL Suffers from Loss of Plasticity 

● Policy collapse is 
possible.



Why does Loss of Plasticity occur?

Parameter norm growth: Large weight magnitudes can 

cause optimization issues.

Saturated activations: Dead or inactive units lead to 

less expressive networks.

Ill-conditioned loss landscapes: regions where the 

gradients either explode (large gradients) or vanish 

(small gradients), making it difficult for the optimizer to 

find a good path to minimize the loss. 
Lyle et al., 2023



We need regularization back 
to the random initialization! 

Kumar et al., 2024



L2 is too sensitive and violates the lifelong setting

● L2 regularization towards 
the initial random 
parameters helps, but 
requires a regularization 
strength

● The regularization 
strength is sensitive to 
different tasks and 
environments

● So how do we set it before 
we run the agent?



Some other solutions

● Reset the network
● Reset some layers in the network
● Reset problematic neurons in the network
● Reset all the parameters, but not all the way
● Regularize the network parameters or features to avoid 

divergence
● But again, how do we know when to reset before we run the 

agent?

Sokar et al., 2023; Nikishin et al., 
2022; Ash and Adams 2020.



What I will demonstrate 

Mitigate Loss of plasticity Accelerate forward transfer

How to implement in your DL/RL 
experiments with only one line change!



and surprisingly… 

In this non-convex, non-stationary optimization 
problem, we can look to online CONVEX 

optimization for help.



OCO Background

Online Convex Optimization is a two-player repeated game.

In each round:

● we pick a decision      in a closed convex set X, and reveal it to 

the environment

● the environment picks a convex loss function 

● we suffer the loss         , and observe a subgradient 

● the environment determines if the game should stop – let T 

be the total number of rounds.

Notes directly from “A modern introduction to online learning” 
by Francesco Orabona 

The goal is to minimize its total loss over all rounds, despite not knowing the 
environment’s loss function in advance



OCO Background



Online Gradient Descent

However, OCO algorithms also require a scaling factor, which 
gives us the following regret bound



Online Gradient Descent

The optimal scaling value is:

Which would give us:



Meta OCO algorithms

how can we calculate an unknown scaling factor on the fly?

We have a “tuner” algorithm take as input, and then calculate new 

scaling value (based on a history of gradients):

Imagine a meta OCO algorithm tuner (to calculate the scaling 
factor), and a base OCO algorithm.



Meta OCO algorithms

Meta OCO reduces through many reductions to Coin betting framework, 
which relies on calculating a wealth function



Meta OCO algorithms

Meta OCO reduces through many reductions to Coin betting framework, 
which relies on calculating a wealth (potential) function – this solved by 
solving the backwards heat equation



Meta OCO algorithms

Two tuners based on two potential functions arise through this type of 
framework:
● AdaNormalHedge [Luo and Schapire 2015] – suboptimal regret
● Erfi potential function [Harvey et al., 2020; Zhang et al., 2024] – optimal 

regret

Calculate scaling values even 
without:



Connecting OCO and Lifelong RL

● Policy definition: A policy refers to the distribution of an agent's actions, 
parameterized by a weight vector               , updated over time based on historical 
observations.

● Loss function: After selecting an action and receiving feedback from the 
environment, the agent defines a loss function          , which characterizes the 
hypothetical performance of each parameter.

● Policy gradient: The agent computes the policy gradient                     which 

represents the direction to update the current policy to improve performance.

● Optimization update: Using a first-order optimization algorithm OPT, the agent 

updates the weights as 



We introduce a meta-optimizer called TRAC



We introduce a meta-optimizer called TRAC



TRAC: Algorithm

● TRAC operates on top of a Base 
Optimizer (i.e Adam/SGD)

● It selects a scaling factor S to scale 
the update of the Base optimizer

● TRAC uses the erfi function in a 
data-dependent way to select S

● With S , we make an update to the 
parameters the regularizes towards 
theta ref, in our case this is the 
random parameter initialization

● TRAC is insensitive to the step size



Experiments

High-dimensional, vision-based Low-dimensional, control

Here we change the level/game Here we perturb the
 observation states



We avoid plasticity loss



We avoid policy collapse 



We also encourage positive transfer (rapid adaptation)



We also encourage positive transfer (rapid adaptation)



Scaling values proposed by TRAC



PPO is not alone in plasticity loss; TRAC works in other LRL algorithms



PPO is not alone in plasticity loss; TRAC works in other LRL algorithms



Other Meta OCO Tuners also work!!



Stronger Analysis Questions

● Analyze saturated activations with TRAC vs 
Adam

● Look at relationship between S and Parameter 
norm (looks like inversely correlated)



TRAC is easy to implement

Can be implemented in your RL or lifelong 
experiments, with only one line change!



Fast TRAC 🏎
Thanks!
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