

Slide

Reference Trustable Decoding A Novel Training-Free Augmentation Paradigm for Large Language Models

Luohe Shi¹, Yao Yao², Zuchao Li¹, Lefei Zhang¹, Hai Zhao² ¹Wuhan University ²Shanghai Jiao Tong University 2024.11

CONTENTS

Slide

- ✓ Reference Trustable Decoding
 - > Motivation
 - > Methodology
 - > Experiments
 - > Conclusions

https://neurips.cc/virtual/2024/poster/95245

Motivation

3

- Model Augmentation: In Context Learning and Finetune
 - **In Context Learning:** Use examples with standard/true/golden output as context to guide LLMs.

Motivation

- Model Augmentation: In Context Learning and Finetune
 - Finetune: Tuning LLMs with examples.

Motivation

- Model Augmentation: In Context Learning and Finetune
 - A Balanced Solution?
 - ➢ Train the model at the cost of inference.
 - ➢ Inference with negligible extra cost.

Training Cost Analysis

Inference

- Major memory occupation for PEFT are Activation States. (Up to 10*MB* per token for 'qkvo-udg' LoRA)
- Activation states are related with back-propagation.

PEFT

- Training Target
 - Avoid deep back propagation

- Without back propagation, we can hardly transfer information back into earlier layers.
- The focus is on LM Head, or how to map last hidden states into final output.

- Datastore Generation
 - Generate a reference datastore directly from pairing last hidden states with their corresponding token. However, LM Head can be large and cause major memory impact when training, so we build a bypass with the datastore.

- Inference with Datastore
 - When inference, we retrieve key-value pairs from our datastore that match current last hidden state best.
 - Then use the similarity score and value to modify our output.

One More Modification

- To use the whole last hidden state for one distribution is a bit of a waste.
- Inspired by Multi-Head mechanism in attention, we slice last hidden state by channel then do multiple smaller retrieve.

Experiments

Model	Benchmark	Baseline	5-shot ICL	RTD (Δ)	5-shot RTD (Δ)
LLaMA2-7B	MMLU	43.8	45.8	45.1 (1.3↑)	47.2 (2.1↑)
	ARC (E & C)	30.1	65.0	41.4 (11.3)	67.3 (2.3 [†])
	PIQA	56.5	62.1	71.4 (14.9↑)	73.2 (11.1 [†])
	Openbook QA	27.8	51.0	30.4 (2.6↑)	53.6 (2.6↑)
LLaMA2-70B	MMLU	56.7	67.9	56.9 (0.2↑)	68.5 (0.6↑)
	ARC (E & C)	67.4	91.6	86.1 (19.7↑)	91.7 (0.1↑)
	PIQA	72.3	85.3	81.9 (9.6†)	86.6 (1.3↑)
	OpenbookQA	53.7	84.4	68.2 (14.5↑)	85.4 (1.0↑)
LLaMA3-8B	MMLU	47.5	63.9	57.2 (9.7↑)	61.9 (2.0↓)
	ARC (E & C)	71.2	87.3	83.7 (12.5↑)	87.1 (0.2↓)
	PIQA	69.9	78.9	76.3 (6.4†)	80.0 (1.1 [†])
	OpenbookQA	53.3	77.5	71.4(18.1↑)	78.6 (1.1↑)
MPT-7B	MMLU	27.4	29.6	30.4 (3.0 [†])	29.8 (0.2↑)
	ARC (E & C)	27.5	failed	27.6 (0.1↑)	30.1
	OpenbookQA	29.4	failed	27.2 (2.2↓)	30.4
GLM3-6B	MMLU	41.9	48.6	47.6 (5.7↑)	49.8 (1.2↑)
	ARC (E & C)	59.1	75.3	75.0 (15.9↑)	76.5 (1.2 [†])
	PIQA	66.8	73.6	75.9 (9.1†)	74.5 (0.9↑)
	OpenbookQA	55.1	67.1	64.0 (8.9^)	68.8 (1.7†)
	C-MMLU	48.8	54.5	53.3 (4.5↑)	54.7 (0.2↑)
Yi-34B	MMLU	68.6	74.3	70.3 (1.7↑)	73.3 (1.0↓)
	ARC (E & C)	93.3	94.0	90.7 (2.6↓)	94.6 (0.6↑)
	PIQA	88.3	83.5	88.4 (0.1 [†])	87.7 (4.2↑)
	OpenbookQA	83.5	89.8	88.4 (0.9↑)	88.8 (1.0↓)
	C-MMLU	70.3	81.0	73.9 (3.6†)	81.8 (0.8↑)
Avg	-	56.41	65.28	63.31	68.88

Table 4: RTD comparing with fine-tune methods

Methods	baseline	LoRA	FT	RTD
Score	41.9	42.5	46.31	42.8

Table 5: Comparison of RTD and RAG using Wikipedia on LLaMA2-7B-Chat.

LLaMA2-7B-Chat	Acc	Latency (ms)
Baseline Wiki RAG Wiki RTD	39.0 29.0 44.4	42.5 > 200 46.5

Table 6:	PPL of	the	fitted	model	on	domain
datasets.						

Dataset	Baseline	LoRA	RTD
Tiny-S	1.6982	1.3710	1.4501

Table 2: RTD on language understanding benches. Baseline refers to zero-shot performance. ICL exceeds MPT-7B's 2048 context window, with a 0 score result, recorded as failed in the table.

Experiments

Table 5: Generalization of RTD.			Table	6: Differ	rent λ in	n Langu	iage Un	derstan	ding	
Source OBQA	ARC	MMLU		λ	1	0.8	0.6	0.4	0.2	0
OBQA 71.4	71.4	71.2		OBQA	71.4	68.0	67.0	66.8	66.6	53.3

Table 7: Efficiency of RTD.							
Methods	baseline	RTD	ICL	ICL + RTD			
Speed(it/s) Extra Memory Usage (MB)	25.1 0	23.6 Ĩ6	7.90 37	7.85 52			

Figure 6: Hyper-parameters' influence on RTD's performance

Conclusions

• Conclusions

- We introduce Reference Trustable Decoding, a novel training-free method designed to augment Large Language Models in downstream tasks, that provides a new balance between efficiency and capability.
- RTD refines the output distribution by leveraging references retrieved from a specially curated datastore, as a bypass of conventional LM Head.
- Our experimental results demonstrate RTD achieved superior performance while maintaining minimal extra cost on both training and inference stage. This highlights the effectiveness of RTD across a diverse range of scenarios, underscoring its potential as a robust solution for enhancing language model capabilities in downstream tasks.

Thank you !

