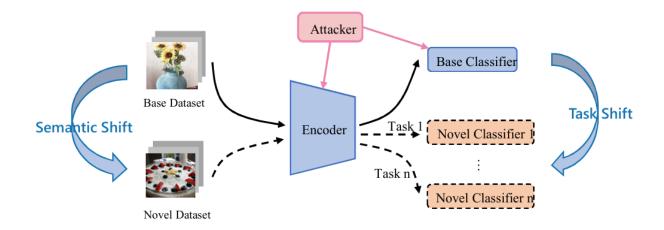

Generate Universal Adversarial Perturbations for Few-Shot Learning

Yiman Hu, YixiongZou, RuixuanLi and Yuhua Li School of Computer Science and Technology, Huazhong University of Science and Technology {imane, yixiongz, rxli, idcliyuhua}@hust.edu.cn


Adversarial Attacks on Few-Shot Tasks

- **Setting**
 - Few-shot learning
 - Adversarial attacks
- **T**ask
 - Attacking the downstream few-shot tasks without foreseeing them
- 🗆 Key
 - Generalize the attack ability to downstream tasks

Challenges

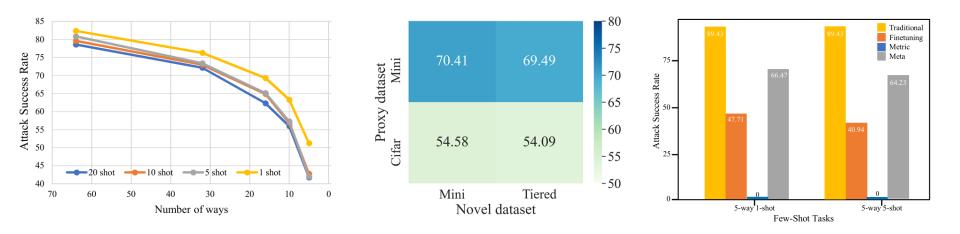
- **Task Shift and Semantic Shift**
 - The two shifts existed in few-shot learning
- Contribution
 - Analyze the presence and impact of the two shifts
 - Build an attack framework and gradually fill up the two shifts to improve attack performance
 - Propose a new standard for studying UAP in FSL scenarios, significantly advancing state-of-the-art methods.

Preliminaries

Threat Model

- An attacker aims to create a Universal Adversarial Perturbation (UAP) to attack a pre-trained model and degrade the performance of downstream few-shot tasks.
- The attacker can not achieve the pre-training and downstream data
- Generate a UAP
 - Train the generator g_{θ}

$$L = -H(f(x + g_{\theta}(z)), y)$$


Apply the perturbation

$$x^{adv} = x + g_{\theta}(z) \text{ s.t. } \|g_{\theta}(z)\|_{p} \le \epsilon$$

Analysis of the Challenges

Existence

- The Attack Success Rate (ASR) decreases when downstream tasks differ from pre-training tasks
- The Attack Success Rate (ASR) decreases when downstream datasets differ from pre-training datasets
- □ Impact
 - The two shifts hinder the attack's transferability

Few-Shot Attacking FrameWork

□ Fill up the task shift

- Align the upstream and downstream tasks during the generation of the UAP
 - Sample 5-way 1-shot tasks on the proxy dataset
 - Generate the UAP based on the proxy tasks
- Fill up the semantic shift
 - Leverage the encoder's generalizability to better transfer
 - Abandon the linear classifier to avoid the influence of the proxy dataset's supervision
 - Construct proxy prototypes to maximize the use of the encoder

(a) An illustration of the attacking framework.

Methods	TS	SS	ASR					
		~~	1-shot	5-shot				
Base classifier	X	X	65.07±0.36	61.73±0.30				
Proxy linear	1	X	$70.87{\scriptstyle \pm 0.36}$	$68.87{\scriptstyle\pm0.27}$				
Base linear	1	1	$76.75{\scriptstyle\pm0.32}$	$74.67{\scriptstyle\pm0.21}$				
Proxy protos	1	1	$80.04{\scriptstyle\pm0.30}$	$77.69{\scriptstyle \pm 0.21}$				

(b) An illustration of different ASRs.

Experiments

□ State-of-the-art performance

Table 3: Comparison of different attack methods on ASR for 5-way 1-shot tasks.					Table 4: Comparison of different attack methods on ASR for 5-way 5-shot tasks.												
Victim	Method	Mark	Baseline	Baseline++	ANIL-1	R2D2-1	ProtoNet	DN4	Victim	Method	Mark	Baseline	Baseline++	ANIL-1	R2D2-1	ProtoNet	DN4
Mini	UAN GAP AdvEncoder	CVPR-18	$47.71{\scriptstyle\pm0.31}$	$\begin{array}{c} 47.68 {\pm} 0.42 \\ 49.40 {\pm} 0.35 \\ 57.37 {\pm} 0.38 \end{array}$	$66.47{\scriptstyle\pm0.32}$		- - 0 66.63±0.34	- 72.85±0.31	Mini	UAN GAP AdvEncoder	CVPR-18	$40.94{\scriptstyle\pm0.28}$	$\begin{array}{c} 45.42 {\scriptstyle \pm 0.30} \\ 45.71 {\scriptstyle \pm 0.29} \\ 55.12 {\scriptstyle \pm 0.28} \end{array}$	$64.23{\scriptstyle\pm0.29}$	-	- 67.76±0.26	- 74.72±0.21
	FSAFW	Ours	$81.56{\scriptstyle \pm 0.29}$	$58.94{\scriptstyle\pm0.43}$	$77.84{\scriptstyle \pm 0.28}$	70.34±0.29	69.03±0.36	$73.31{\scriptstyle \pm 0.32}$		FSAFW	Ours	$79.00{\scriptstyle \pm 0.18}$	$63.41{\scriptstyle \pm 0.27}$	$78.31{\scriptstyle \pm 0.21}$	$70.42{\scriptstyle \pm 0.22}$	$67.96{\scriptstyle \pm 0.28}$	$74.88{\scriptstyle \pm 0.22}$
Tiered	UAN GAP AdvEncoder	CVPR-18	$49.72{\scriptstyle\pm0.33}$	$\begin{array}{c} 33.00{\scriptstyle\pm0.27}\\ 58.23{\scriptstyle\pm0.28}\\ 62.16{\scriptstyle\pm0.29}\end{array}$	$61.19{\scriptstyle\pm0.30}$		- 60.23±0.33	- 68.86±0.32	Tiered	UAN GAP AdvEncoder	CVPR-18	$44.90{\scriptstyle\pm 0.30}$	$\begin{array}{c} 23.45 {\scriptstyle \pm 0.23} \\ 52.40 {\scriptstyle \pm 0.28} \\ 58.23 {\scriptstyle \pm 0.28} \end{array}$	$59.52{\scriptstyle \pm 0.28}$	-	- 60.40±0.30	- 69.55±0.22
	FSAFW	Ours	$76.03{\scriptstyle \pm 0.32}$	$62.56{\scriptstyle \pm 0.29}$	$68.26{\scriptstyle \pm 0.28}$	76.49±0.27	76.73±0.32	$78.47{\scriptstyle\pm0.34}$		FSAFW	Ours	75.09±0.21	59.40±0.30	68.96±0.23	76.94±0.19	$\textbf{78.33}{\scriptstyle \pm 0.17}$	$75.91{\scriptstyle \pm 0.21}$

□ Ablation studies on different shapes of proxy tasks

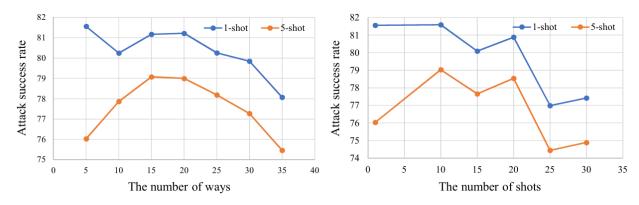


Figure 6: An illustration of the ASR that different forms of proxy tasks bring.

Thanks!