# Cascade of phase transitions in the training of Energy-based models



#### **Aurélien Decelle**

from Universidad Complutense de Madrid

Joint work with Dimitrios Bachtis @ ENS Paris Giulio Biroli @ ENS Paris Beatriz Seoane @ Complutense Madrid



## Unsupervised learning and Energybased model

Energy based model is a class of unsupervised models where the distribution is given by

$$p(\boldsymbol{s}) = \frac{1}{Z} \exp\left(-\mathcal{H}[\boldsymbol{s};\boldsymbol{\theta}]\right)$$

In such model, the learning is typically done by maximizing the likelihood w.r.t. heta

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = \langle \nabla_{\boldsymbol{\theta}} \mathcal{H} \rangle_{\text{data}} - \langle \nabla_{\boldsymbol{\theta}} \mathcal{H} \rangle_{\text{p}}$$

The difficulty lies in the computation of the average w.r.t. the model which is usually done by performing Monte Carlo estimation

# Related works and setting

In order to pursue analytical computation we will restrict ourselves to the case of the Restricted Boltzmann Machine

$$\mathcal{H} = -\sum_{ia} v_i w_{ia} h_a - \sum_i v_i b_i - \sum_a h_a c_a$$
$$v_i = \{\pm 1\} \text{ or } \{0, 1\}$$
$$h_a = \{0, 1\} \text{ or Gaussian}$$



More generally, It has been shown in some generative models 1 – How the phase space of RBM can exhibit spontaneous broken symmetry 2 – How perfectly trained diffusion model undergoes several phase transition during sample generation

We show theoretically and numerically the phase transition occurring in the learning of RBM



# Theoretical setting

We consider a simple bimodal artificial dataset which we learn with an RBM. We can compute the gradient in the infinite size limit.

We see that we can project the gradient onto  $\boldsymbol{\xi}$  to obtain a simpler form to solve.

Three stages:

The positive/data term triggers the learning in the direction of the defined by the two lumps.
The weights are growing and undergoes a phase transition with a diverging susceptibility
The negative term counter-balance the data to cancel the gradient adjusting the lumps

#### Results

 $m = \tanh(\beta m)$ 

With two modes to learn  $\rightarrow$  learning curve w(t)



### Results

With four non-orthogonal clusters, two learned directions  $\xi^1 + \xi^2$  and  $\xi^1 - \xi^2$ 



# Numerical results on MNIST



# Numerical results on Genetic



#### Conclusions

- We can characterize precisely the learning of RBMs theoretically in a simple setting
- The learning trajectory passes through several phase transitions which results in sharp sudden grows of the mixing time of the model
- Numertical experiment confirm the nature of the phase transition and its links to the Principal Component Analysis of the dataset
- These results should probably extend to generic Energy Based model
- We can not control the late training time in more complex situations