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Abstract

Sparse ridge regression problems play a significant role across various domains. To solve sparse
ridge regression, [1] recently proposes an advanced algorithm, Scalable Optimal K‐Sparse Ridge
Regression (OKRidge), which is both faster andmore accurate than existing approaches. However,
the absence of theoretical analysis on the error of OKRidge impedes its large‐scale applications.
In this paper, we reframe the estimation error of OKRidge as a Primary Optimization (PO) problem
and employ the Convex Gaussian min‐max theorem (CGMT) to simplify the PO problem into an
Auxiliary Optimization (AO) problem. Subsequently, we provide a theoretical error analysis for
OKRidge based on the AO problem. This error analysis improves the theoretical reliability of
OKRidge. We also conduct experiments to verify our theorems and the results are in excellent
agreement with our theoretical findings.

Sparse Ridge Regression (SRR)

In this paper, we are interested in addressing the following k‐sparse linear regression problem
with additive noise:

yyy = XXXβββ∗ + ϵϵϵ with ∥βββ∗∥0 ≤ k, (1)

where βββ∗ ∈ Rd represents the “true” weight parameter, XXX = (xxx1,xxx2, · · · ,xxxn)⊤ ∈ Rn×d is
the input measurement matrix, yyy = (y1, y2, · · · , yn)⊤ ∈ Rn is the real output responses, ϵϵϵ =
(ϵ1, ϵ2, · · · , ϵn)⊤ ∈ Rn is the noise vector, k ∈ Z+ specifies the maximum number of nonzero
elements for the model, ∥ · ∥0 denotes the number of nonzero elements of the given vector.
Moreover, the entries ofXXX are drawn i.i.d. from N (0, 1); the entries of ϵϵϵ are drawn i.i.d. from
N (0, σ2); and we assume k

d is a constant and limd→∞
n(d)
d = δ ∈ (0, 1).

The formulation (1) represents a black boxmodel whereβββ∗ is fixed. GivenXXX and yyy, to determine
the target vector βββ∗, the most basic method is solving the following k‐Sparse Ridge Regression
Optimization (k‐SRO), as outlined by [1]:

min
βββ

∥yyy −XXXβββ∥2
2 + λ∥βββ∥2

2 s.t. ∥βββ∥0 ≤ k, (2)

where λ > 0 is a regularizer parameter, and ∥ · ∥2 denotes the Euclidean norm. Our paper
focuses on the worst‐case scenario ∥βββ∗∥0 = k. This k‐SRO is different from the traditional
ridge regression due to the constraint of k‐sparse structure for βββ. The k‐SRO problem (2) is
NP‐hard, and is more challenging in the presence of highly correlated features.

The Convex Gaussian Min-max Theorem (CGMT)

Definition 3.1[GMT admissible sequence] The sequence
{
GGG(d), ggg(d),hhh(d),S(d)

www ,S(d)
uuu , ψ(d)}

d∈N in‐
dexed by d, withGGG(d) ∈ Rn×d, ggg(d) ∈ Rn, hhh(d) ∈ Rd, S(d)

www ⊂ Rd, S(d)
uuu ⊂ Rn, ψ(d) : S(d)

www × S(d)
uuu → R

and n = n(d), is said to be admissible if, for each d ∈ N, S(d)
www and S(d)

uuu are compact sets and ψ(d) is
continuous on its domain. Onwards, we will drop the superscript (d) fromGGG(d), ggg(d), hhh(d).

A sequence
{
GGG(d), ggg(d),hhh(d),S(d)

www ,S(d)
uuu , ψ(d)}

d∈N defines a sequence of min‐max problems

Φ(d)(GGG) := min
www∈S(d)

www

max
uuu∈S(d)

uuu

uuu⊤GGGwww + ψ(d)(www,uuu), (3)

ϕ(d)(ggg,hhh) := min
www∈S(d)

www

max
uuu∈S(d)

uuu

∥www∥2ggg
⊤uuu + ∥uuu∥2hhh

⊤www + ψ(d)(www,uuu). (4)

Importantly, the formulation (3) is called Primary Optimization (PO) and the formulation (4) is
called Auxiliary Optimization (AO). Based on the GMT admissible sequence and the notation
introduced above, we present the CGMT below.

Theorem 3.2 [CGMT[2]] Let
{
GGG(d), ggg(d),hhh(d),S(d)

www ,S(d)
uuu , ψ(d)}

d∈N be a GMT admissible sequence
as in Definition 1, for which additionally the entries of GGG, ggg, hhh are drawn i.i.d. from N (0, 1). Let
Φ(d)(GGG), ϕ(d)(ggg,hhh) be the optimal costs, and, www(d)

Φ (GGG), www(d)
ϕ (ggg,hhh) the corresponding optimal mini‐

mizers of the PO and AO problems in (3) and (4). The following three statements hold

(i) For any d ∈ N and c ∈ R,

P
(
Φ(d)(GGG) < c

)
≤ 2P

(
ϕ(d)(ggg,hhh) ≤ c

)
.

(ii) For any d ∈ N. If S(d)
www , S(d)

uuu are convex, and, ψ(d)(·, ·) is convex‐concave on S(d)
www × S(d)

uuu , then, for
any µ ∈ R and t > 0,

P
(
|Φ(d)(GGG) − µ|) > t

)
≤ 2P

(
|ϕ(d)(ggg,hhh) − µ|) > t

)
.

(iii) Assume the conditions of (ii) hold for all d ∈ N. Let ∥ · ∥ denote some norm in Rd. If, there exist
constants (independent of d) κ∗, α∗ and τ > 0 such that

(a) ϕ(d)(ggg,hhh) P−→ κ∗, (b) ∥www(d)
ϕ (ggg,hhh)∥ P−→ α∗, (c) with probability one in the limit d → ∞{
υ(d)(www;ggg,hhh) ≥ ϕ(d)(ggg,hhh) + τ

(
∥www∥ −www

(d)
ϕ (ggg,hhh)

)2
,∀www ∈ S(d)

www

}
,

then,

∥www(d)
Φ (GGG)∥ P−→ α∗. (5)

The OKRidge Method for solving SRR

In order to rapidly solve k‐SRO problem (2) while ensuring solution optimality, [1] introduces a
highly efficient method called OKRidge. Specifically, the optimization (2) can be relaxed as:

min
βββ,zzz

Lsaddle
ridge (βββ,zzz), s.t.

d∑
j=1

zj ≤ k, zj ∈ [0, 1], (6)

where Lsaddle
ridge (βββ,zzz) := ∥yyy −XXXβββ∥2

2 + λ
∑d
j=1,zj ̸=0

β2
j
zj
.We define a new function L(βββ) as:

L(βββ) = min
zzz

Lsaddle
ridge (βββ,zzz), s.t.

d∑
j=1

zj ≤ k, zj ∈ [0, 1]. (7)

For any βββ, L(βββ) serves as a valid lower bound for problem (6). Then, we choose zzz such that
this lower bound L(βββ) is tight.
Theorem 4.2 The function L(βββ) defined in Equation (7) is lower bounded by

L(βββ) ≥ ∥yyy −XXXβββ∥2
2 + λSumTopk(βββ ⊙ βββ). (8)

where ⊙ is Hadamard product, and SumTopk(·) denotes the summation of the largest k elements of
a given vector.

If we define
LOKRidge(βββ) := ∥yyy −XXXβββ∥2

2 + λSumTopk(βββ ⊙ βββ),

OKRidge solves k‐SRO problem (2) with

min
βββ

LOKRidge(βββ). (9)

So far, we transform the constrained k‐SRO problem (2) into the unconstrained optimization
problem (9). Let β̂ββ = argminβββ LOKRidge(βββ), OKRidge regards β̂ββ as the estimation of βββ∗ in
problem (1). Next, we apply CGMT to analyze the error ∥β̂ββ−βββ∗∥2

2 for OKRidge by transforming
the optimization (9) into a PO problem.

The Error Analysis for OKRidge

Based on (2), the estimation error of OKRidge can be obtained by normalized AO problem:

min
www

1√
n

[
∥XXXwww − ϵϵϵ∥2

2 + λSumTopk
(
(www + βββ∗) ⊙ (www + βββ∗)

)]
, (10)

where www := βββ − βββ∗, and the estimation error can be measured by ∥www∥2. Subsequently, we
transform the optimization (10) into PO (11) about the error of OKRidge, using the Fenchel‐
Moreau theorem.

max
uuu

1√
n

[
uuu⊤XXXwww − uuu⊤ϵϵϵ−

∥uuu∥2
2

4
+ λSumTopk

(
(www + βββ∗) ⊙ (www + βββ∗)

)]
, (11)

Then, we employ the CGMT framework to substitute the complex PO problemwith a simplified
AO problem (12) that only involves two scalar variables: α and η.

max
η≥0

min
α≥0

η
√
α2 + σ2 − αη

√
D̄(λ
η

) − Γ(η). (12)

where α = ∥www∥2 and η = ∥uuu∥2. Finally, we present the following theoretical error analysis of
OKRidge based on the AO problem (12).

Theorem 5.2 Supposeβββ∗ is the true weight parameter of the problem (1), β̂ββ is the optimal solution to
the objective function (9) of OKRidge, D(τ )

n → D̄(τ ) ∈ (0, 1), aNSE := limσ2→0 NSE = limσ2→0 ∥β̂ββ−
βββ∗∥2

2
/
σ2. Define λmap is the solution of map(τ ) = 0 for τ > 0, then, the estimation error of OKRidge

is given by the following probability limit:

lim
d→0

aNSE P−→ ∆(λ̂), (13)

where ∆(λ̂) = D̄(λ̂)
1−D̄(λ̂)

, and λ̂ = λmap.

Numerical Experiments
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Figure 1. The change of NSE with 1/σ for
OKRidge under different λ. The red curve at the
bottom corresponds to the case λ = λbest.
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Figure 2. The change of NSE with λ for OKRidge
under different σ. The blue curve corresponds to
the real change of ∆(λ̂). Here, λbest is the optimal
weight of the regularizer.
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