Understanding Model Expressivity for Learning in Strategic Environments

Caltech

Question: How do strategic interactions affect the relationship between model class expressivity and equilibrium performance?

Results: Strategic interactions can yield a non-trivial relationship between model class expressivity and model performance at equilibrium

Implications: The choice of model class expressivity for models deployed in strategic environments should be treated as a strategic action

Model

Learner **trains** models, deploys into the environment, and retrains given environmental response to model.

Phase 3: Equilibrium

Tinashe Handina and Eric Mazumdar

Model class selection in games Should the learner always select the most expressive model class if they want the best equilibrium outcome?	E> Mu
YES: If the environment is stationary or the environment an learner are in a Stackelberg game where the learner leads	
Stationary environments: The environment has only one action. (i.e., $\mathcal{E} = \{e\}$). Equilibrium is (θ^* , e^*) such that	
$\theta^* = argmin_{\theta \in \Theta_i} f_{learner}(\theta, e)$	
Stackelberg environments – learner leads: [1] Equilibrium is a joint strategy (θ^* , e^*) such that	
$\theta^* = argmin_{\theta \in \Theta_i} f_{learner}(\theta, BR_e(\theta))$	
and $e^* = BR_e(\theta^*) = argmin_{e \in \mathcal{C}} f_{environment}(\theta^*, e)$	
NO: If the environment and learner are in a Stackelberg game where the learner follows or in a Nash game:	wl pa re
Stackelberg environments – learner follows: [2]	St
Equilibrium is a joint strategy (θ^* , e^*) such that	
$e^* = argmin_{e \in \mathcal{C}} f_{environment} (BR_{l}(e), e))$	
and $\theta^* = BR_l(e^*) = argmin_{\theta \in \Theta_i} f_{learner}(\theta, e^*)$	
General Nash environments: [3]	
Equilibrium is a joint strategy (θ^* , e^*) such that	
$f_{environment} (\theta^*, e') \ge f_{environment} (\theta^*, e^*) \forall e' \in \mathcal{E}$ $f_{learner} (\theta', e^*) \ge f_{learner} (\theta^*, e^*) \forall \theta' \in \Theta_i$	
TAKEAWAY: Optimizing over more expressive model classes can lead to worse equilibrium outcomes when	A le
learning in strategic environments	Aae
	add
INFORMAL THEOREM: For a two-player monotone game G satisfying some game regularity assumptions, if equilibrium (θ^* , e*) in $\Theta \propto \mathcal{E}$ is not	equ moo
Pareto optimal, then there exists a restriction of the learner's action set such that the restricted game G' has a Nash equilibrium (θ' , e') with:	[1] Mc classif

```
f_{learner} (\theta', e') < f_{learner} (\theta^*, e^*)
```

ents can collectively strategically manipulate their data by ding some deviation e. The payoff at the Stackelberg uilibrium is higher when the learner makes use of the smaller del class Θ_2 instead of Θ_1

oritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic fication. In Innovations in Theoretical Computer Science, page 111–122, 2016 [2] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2018 [3] Meena Jagadeesan, Michael Jordan, Jacob Steinhardt, and Nika Haghtalab. Improved bayes risk can yield reduced social welfare under competition. In Thirty-seventh Conference on Neural Information Processing Systems, 2023

xamples

Iti-Agent Reinforcement Learning

he learner in this instance selects a policy class from $\{\Theta_k\}_{k=1}^N$ where $\Theta_k := 1 - p_k \le \theta \le p_k$ for $0.5 \le p_k \le 1$. We construct ayoffs in a manner that results in decreasing performance with espect to expressivity of the model class.

trategic Regression

earner selects between two model classes:

 $\Theta_1 := \theta_1^T x + \theta_2 \exp(-||x||^2)$ or $\Theta_2 := \theta^T x$