

Parallelizing Model-based Reinforcement Learning Over the Sequence Length

Zirui Wang, Yue Deng, Junfeng Long, Yin Zhang

MBRL has demonstrated stunning **Sample Efficiency** in:

- Continuous and Discrete Action Space
- Proprioception and Pixel Observation
- Simulator, Game, and Robots in Real-World

(Micheli et al, 2023)

(Hansen et al, 2023)

(Wu et al, 2022)

MBRL works so well, but what must we give it return?

Extra Computations, Memory, and Training Time

Training overhead in Atari100K benchmark (roughly 2 hours of gameplay)

MBRL Method	Wall-clock Time	Hardware Requirement
SimPLE [KBM+'2019]	5 days	1 x P100
EfficientZero [YLK+'2021]	7 hours	4 x RTX3090
IRIS [MAF+'2023]	7 days	1 x A100
TWM [RHU+'2023]	10 hours	1 x A100
DreamerV3 [HPB+'2023]	12 hours	1 x V100
STORM [ZWS+'2023]	9.3 hours	1 x RTX3090

How can we overcome these challenges in MBRL?

Let's take a glimpse at the challengers of Transformers in LLM domain

Key idea: Parallel Training and Recurrent Inference

Key technology: Parallel Scan

We propose Parallelized Model-based RL framework

Apply parallel scan for both World Model Learning & Policy Learning

Parallel World Model

We employ the **modified Linear Attention** in our world model

$$\begin{array}{l} \text{Kernel function in Linear Attention} \\ q_t, k_t = 1 + \text{ELU}(u_t W_q), 1 + \text{ELU}(u_t W_k), \\ v_t = \text{Sigmoid}(u_t W_r) \odot u_t W_v, \quad \text{Token mixing module} \\ \text{Data-dependent decay rate} \quad g_t = \text{Sigmoid}(\underbrace{\mu \odot u_t + (1 - \mu) \odot u_{t-1}}_{x_t = g_t \odot x_{t-1}} + k_t^\top v_t, \quad \text{Post-Norm} \\ y_t = \text{RMSNorm}(q_t x_t)W_h + u_t, \\ h_t = \text{SiLU}(y_t W_g) \odot y_t W_y + y_t. \end{array}$$

	Mini	Minimum complexity			More expressive			
Architecture	Training	Inference step	Imagination step	Parallel	Resettable	Selective		
Atten	$\mathcal{O}(L^2)$	$\mathcal{O}(L^2)$	$\mathcal{O}((L+H)^2)$	\checkmark	\checkmark	\checkmark		
RNN	$\mathcal{O}(L)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	X	\checkmark	\checkmark		
SSM (FFT)	$\mathcal{O}(L\log L)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	\checkmark	×	×		
SSM (Scan)	$\mathcal{O}(L)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	\checkmark	\checkmark	×		
Lin-Atten (Scan)	$\mathcal{O}(L)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	\checkmark	\checkmark	\checkmark		

Parallelized Eligibility Trace Estimation

$$\begin{aligned} \mathsf{TD-\lambda:} \quad R_t^\lambda &= \hat{r}_t + (\gamma \hat{c}_t) \left[(1-\lambda) v_\phi(s_{t+1}) + \lambda R_{t+1}^\lambda \right] \\ &= (\lambda \gamma \hat{c}_t) R_{t+1}^\lambda + \left[\hat{r}_t + (1-\lambda) (\gamma \hat{c}_t) v_\phi(s_{t+1}) \right] \end{aligned}$$

Eligibility Trace: $R_t = v_{\phi}(s_t) + E_t$,

$$E_{t} = (\gamma \hat{c}_{t} \lambda_{t}) E_{t+1} + \rho_{t} \left[\hat{r}_{t} + (\gamma \hat{c}_{t}) v_{\phi}(s_{t+1}) - v_{\phi}(s_{t}) \right]$$

We notice that the computation of **Eligibility Trace Estimations** can also be speeded up by using parallel scan

PaMoRL achieves MBRL-level sample efficiency, and MFRL-level computational efficiency

	M	adiana (A)	P(PaMoRL > Y)				MoRL > Y)	
Mean (↑)		edian (†)	IQIVI (†)	Optimali	y Gap (↓)	REI	М	
Paworl		_	_	1 a -		. IRI	s	
REM				- 1 -				
					:	IVVI it	M	
						ରୁ DreamerV	/3	
DreamerV3	_					🧟 SimPL	.e	
SimPLe						SP	R	
SPR I						01		
0.3 0.6 0.9 1	.2 0.2	0.4 0.6 0.2	0.4 0.6	0.45 0	0.60 0.75		0.00 0.25	0.50 0.75 1.00
	Hum	an Normalized S	core					
Task		Proprio Control		Vision Control				
	SAC	DreamerV3	PaMoRL	(Ours)	CURL	DrQ-v2	DreamerV3	PaMoRL (Ours)
Cartpole Balance	997.6	839.6	994	.7	963.3	965.5	956.4	610.3
Cartpole Balance Sparse	993.1	559	997	.4	999.4	1000	813	996.5
Cartpole Swingup	861.6	527.7	773	.6	765.4	756	374.8	281.9
Cup Catch	949.9	729.6	957	.9	932.3	468	947.7	966.3
Finger Spin	900	765.8	835	.8	850.2	459.4	633.2	765.3
Pendulum Swingup	158.9	830.4	707	.1	144.1	233.3	619.3	26.6
Reacher Easy	744	693.4	761	.6	467.9	722.1	441.4	950.2
Reacher Hard	646.5	768	645	.9	112.7	202.9	120.4	103.7
Cartpole Swingup Sparse	256.6	172.7	542	.3	8.8	81.2	392.4	263.6
Cheetah Run	680.9	400.8	313	.2	405.1	418.4	587.3	935.6
Finger Turn Easy	630.8	560.5	617	.1	371.5	286.8	366.6	886.2
Finger Turn Hard	414	474.2	389	.7	236.3	268.4	258.5	500.1
Hopper Hop	$\overline{0.1}$	9.7	387	.5	84.5	26.3	76.3	426.9
Hopper Stand	3.8	2 <u>96.</u> 1	151	.5	627.7	290.2	652.5	189.7
Quadruped Run	139.7	289	246	5.7	170.9	339.4	168	344.8
Quadruped Walk	237.5	256.2	457	.9	131.8	311.6	122.6	371.6
Mean	538.4	510.8	611	.2	454.5	426.8	470.7	538.7
Median	638.7	543.4	631	.5	388.3	325.5	416.9	463.5

Significant speed-ups with acceptable extra memory overheads

RMSNorm, Token Mixing, and Data-dependent Decay Rate matters

BatchNorm Trick is crucial for extracting the details of pixel observations

Parallelizing Model-based Reinforcement Learning Over the Sequence Length

Zirui Wang, Yue Deng, Junfeng Long, Yin Zhang

Thanks!

ziseoiwong@zju.edu.cn

https://github.com/Wongziseoi/PaMoRL