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2 Diffusion Model Background: Optimal Denoisers are Density Estimators

The defining feature of diffusion models is a sequence of distributions that progressively add noise
to the data, from which we then learn to recover the original data. The (“variance preserving” [33])
channel that mixes the signal x with Gaussian noise is defined as x↵ ⌘

p
�(↵)x +

p
�(�↵)✏ with

✏ ⇠ N (0, I), x ⇠ p(x), where ↵ represents the log of the Signal-to-Noise Ratio (SNR), p(x) is the
unknown data distribution for x 2 Rd, and �(·) is the sigmoid function. We define the sequence of
intermediate distributions drawn according to this channel with a subscript as p↵(x). By definition,
we express lim↵!1 p↵(x) = p(x) in this paper. Note that we use a different scaling convention for
noise from [11] and [6], where the former one takes x + �✏ as the forward noising channel and the
latter one takes

p
↵tx +

p
1 � ↵t✏ as the forward noising channel. For further detailed relationships

among these scaling conventions, please check App. B.3.

The minimum mean square error (MMSE) estimator ✏̂ for recovering ✏ from the noisy channel that
mixes x and ✏ can be derived via variational calculus and written as follows.

✏̂(x↵, ↵) ⌘ E✏⇠p(✏|x↵)[✏] = arg min
✏̃(·,·)

Ep(✏)p(x)[k✏ � ✏̃(x↵, ↵)k2
2]. (1)

Sampling from the true posterior is typically intractable, but by using a neural network to approximate
the solution to the regression optimization problem, we can get an approximation for ✏̂. From [13],
we see that log-likelihood can be written exactly in terms of an expression that depends only on the
MMSE solution to the Gaussian denoising problem, i.e.

� log p(x) = c + 1/2

Z 1

�1
Ep(✏)[k✏ � ✏̂(x↵, ↵)k2

2] d↵. (2)

The constant, c = d/2 log(2⇡e) � d
2

R 1
0 d↵̄ �(↵̄) does not depend on data and will play no role in

our approach, as it cancels out in our derivations in Sec. 3.

3 What Your Diffusion Model is Hiding: Noise Classifiers

We now introduce our first main result, which shows that diffusion models implicitly define optimal
noise classifiers. Eq. (2) expresses the probability density of the data directly in terms of the denoising
function. If we apply Eq. (2) to the noisy distributions that bridge the data and a Gaussian, p⇣(x),
we can see that all mixture densities can be written in terms of the same optimal denoising function,
✏̂(·, ·). The complete derivation is presented in App. A.2.

� log p⇣(x) = c + 1/2

Z 1

�1
d↵ Ep(✏)[k✏ � b · ✏̂(x↵, �)k2

2] (3)

x↵ ⌘
p

�(↵)x +
p

�(�↵)✏ (4)

� ⌘ ��1(�(⇣)�(↵)), b ⌘
p

�(�↵)/�(��) (5)

Intuitively, if we find the optimal denoising function for the data distribution, it may be hypothesized
that it can denoise an already noisy version of the data distribution. Using Eq. 2, this directly
translates into an expression for density of mixture distributions. Differences in log likelihoods
lead to cancellation of constants, and these Log Likelihood Ratios (LLR) are related to the optimal
classifiers [4] as we show below.

To connect LLRs with classification, consider the following generative model. We generate a random
binary label q(y = ±1) = 1/2. Then, conditioned on y, we sample from some distribution q(x|y).
Given samples (x, y) ⇠ q(x, y) = q(x|y)q(y), the Bayes optimal classifier is:

q(y|x) =
q(x|y)q(y)

q(x)
=

q(x|y)q(y)

q(x|y = 1)q(y = 1) + q(x|y = �1)q(y = �1)

= 1/(1 +
q(x| � y)

q(x|y)
) = 1/(1 + exp(y(log q(x|y = �1) � log q(x|y = 1))))

log q(y|x) = � log(1 + exp(y log
q(x|y = �1)

q(x|y = 1)
)) = � softplus(y log

q(x|y = �1)

q(x|y = 1)
)) (6)

3
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In the second line, because 8y, q(y) = 1/2, these constants cancel out. Then we can just expand
definitions and re-arrange to write in terms of log probabilities.

Contrastive Diffusion Loss (CDL) Our next contribution is to use the new connection between
diffusion denoisers and noise classifiers to define a new training objective. We set the distributions
q(x|y = 1) and q(x|y = �1) to be two distributions at different noise levels that we can write in terms
of the optimal diffusion denoiser from Eq. 3. So we have q(x|y = 1) ⌘ p(x), the data distribution,
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• NLL for data distribution: 

As in the previous section, we will adopt information theory notation. If we define the optimal
denoiser for the input distribution, p⇣(x), with a subscript as ✏̂⇣(·, ·), we can write the density
analogously to Eq. 2.

� log p⇣(x) = c + 1/2

Z 1

�1
d↵̄ Ep(✏)[k✏ � ✏̂⇣(

p
�(↵̄)x +

p
�(�↵̄)✏, ↵̄)k2

2] (16)

� log p⇣(x) = c + 1/2

Z 1

�1
d↵ Ep(✏)[k✏ � ✏̂⇣(x↵, ↵)k2

2]

Note that we now have to keep track of two log SNR values. One indicates how much noise is added
to the new “data” distribution, the other is how much noise we add and then try to remove with our
denoiser. The goal is to relate ✏̂⇣ to ✏̂. We can formally write down the optimal solution using the
relation in Eq. 1.

✏̂⇣(x, ↵̄) = E✏⇠p(E|Z=x)[✏]

Now, however, the noise channel is defined differently. The channel mixes the signal, x̄ ⇠ p⇣(X̄),
with Gaussian noise, ✏̄ ⇠ N (0, I), as Z ⌘

p
�(↵̄)X̄ +

p
�(�↵̄)Ē . And the noisy variable,

X̄ =
p

�(⇣)X +
p

�(�⇣)E , where we must be careful to distinguish the two independent sources
of Gaussian noise.
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Note in the second line that the expectation of ✏0 is zero, and we move the constant for the other
term, b, outside the integral. In the third line, we define � which represents the log SNR of the two
consecutive noisy channels with ⇣, ↵̄. Then we recognize the resulting integral as Eq. 1, the optimal
denoiser for recovering samples from from the original (non-noisy) data distribution in Gaussian
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• NLL for noisy data distribution: 



Log likelihood ratios and classification

If we sample from either distribution 
with probability P(C)=1/2, then, 
Bayes rule relates the log likelihood ratio 
to the optimal classifier:

𝐿𝐿𝑅 𝑥 ≡ log
𝑝! 𝑥
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= log
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Idea: train classifiers to learn densities

Source 𝒑𝟎(𝒙)

Target 𝒑𝟏(𝒙)

Probability space

𝐶 = 1

𝐶 = 0

Gutmann & Hyvarinen (2012) “Noise contrastive estimation…”
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Sample from either distribution with probability q(y= ± 1) = ,
-, then, the optimal 

binary Bayes classifier is related to the log-likelihood ratio:

unknown data distribution for x 2 Rd, and �(·) is the sigmoid function. We define the sequence of
intermediate distributions drawn according to this channel with a subscript as p↵(x). By definition,
we express lim↵!1 p↵(x) = p(x) in this paper. Note that we use a different scaling convention for
noise from [11] and [6], where the former one takes x + �✏ as the forward noising channel and the
latter one takes

p
↵tx +

p
1 � ↵t✏ as the forward noising channel. For further detailed relationships

among these scaling conventions, please check App. B.3.

The minimum mean square error (MMSE) estimator ✏̂ for recovering ✏ from the noisy channel that
mixes x and ✏ can be derived via variational calculus and written as follows.

✏̂(x↵, ↵) ⌘ E✏⇠p(✏|x↵)[✏] = arg min
✏̃(·,·)

Ep(✏)p(x)[k✏ � ✏̃(x↵, ↵)k2
2]. (1)

Sampling from the true posterior is typically intractable, but by using a neural network to approximate
the solution to the regression optimization problem, we can get an approximation for ✏̂. From [13],
we see that log-likelihood can be written exactly in terms of an expression that depends only on the
MMSE solution to the Gaussian denoising problem, i.e.

� log p(x) = c + 1/2
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R 1
0 d↵̄ �(↵̄) does not depend on data and will play no role in

our approach, as it cancels out in our derivations in Sec. 3.

3 What Your Diffusion Model is Hiding: Noise Classifiers

We now introduce our first main result, which shows that diffusion models implicitly define optimal
noise classifiers. Eq. (2) expresses the probability density of the data directly in terms of the denoising
function. If we apply Eq. (2) to the noisy distributions that bridge the data and a Gaussian, p⇣(x),
we can see that all mixture densities can be written in terms of the same optimal denoising function,
✏̂(·, ·). The complete derivation is presented in App. A.2.
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Intuitively, if we find the optimal denoising function for the data distribution, it may be hypothesized
that it can denoise an already noisy version of the data distribution. Using Eq. 2, this directly
translates into an expression for density of mixture distributions. Differences in log likelihoods
lead to cancellation of constants, and these Log Likelihood Ratios (LLR) are related to the optimal
classifiers [4] as we show below.

To connect LLRs with classification, consider the following generative model. We generate a random
binary label q(y = ±1) = 1/2. Then, conditioned on y, we sample from some distribution q(x|y).
Given samples (x, y) ⇠ q(x, y) = q(x|y)q(y), the Bayes optimal classifier is:

q(y|x) =
q(x|y)q(y)

q(x)
=

q(x|y)q(y)

q(x|y = 1)q(y = 1) + q(x|y = �1)q(y = �1)
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q(x| � y)

q(x|y)
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log q(y|x) = � log(1 + exp(y log
q(x|y = �1)

q(x|y = 1)
)) = � softplus(y log

q(x|y = �1)

q(x|y = 1)
)) (6)

In the second line, because 8y, q(y) = 1/2, these constants cancel out. Then we can just expand
definitions and re-arrange to write in terms of log probabilities.

Contrastive Diffusion Loss (CDL) Our next contribution is to use the new connection between
diffusion denoisers and noise classifiers to define a new training objective. We set the distributions
q(x|y = 1) and q(x|y = �1) to be two distributions at different noise levels that we can write in terms
of the optimal diffusion denoiser from Eq. 3. So we have q(x|y = 1) ⌘ p(x), the data distribution,
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Let q(x|y=1) = 𝑝(𝑥) be data distribution, q(x|y= − 1) = 𝑝+(𝑥) be noisy data distribution

LLR → Optimal classifier: 

and q(x|y = �1) ⌘ p⇣(x), for some noise level, ⇣. Then given a sample (x, y) ⇠ q(x, y) the
per-sample cross-entropy loss for the noise classifier, Eq. (6), is as follows.

LCDL = Eq(x,y) [softplus(y(log p⇣(x) � log p(x)))] (7)

We can estimate both densities directly from our denoising model using Eq. (3), with the constants
canceling out in the process. This loss differs significantly from the standard diffusion loss. Intuitively,
to distinguish between a sample from the data distribution, p(x), versus a noisy version of the data
distribution, p⇣(x), we need to evaluate denoisers on points from both distributions. In standard
diffusion training, denoisers at noise level ⇣ are only trained on samples from p⇣(x).
Limitations: We highlight that CDL is more expensive to compute than the standard diffusion loss,
significantly increasing the total cost of diffusion model training. Implementation details appear in
App. B.4 and training cost details appear in App. B.5.

Choice of noise to contrast Next, let’s break the Log-Likelihood Ratio (LLR) term in Eq. (7)
down to see how to choose ⇣ to maximize the benefit of CDL. Combining Eq. (2) and Eq. (3) we
have Eq. (8), where the constant cancels out.

LLR = log p⇣(x) � log p(x) =

Z 1

�1
d↵ Ep(✏)[k✏ � ✏̂(z, ↵)k2

2] � Ep(✏)[k✏ � b✏̂(z, �)k2
2] (8)

with: z ⌘
p

�(↵)x +
p

�(�↵)✏

Note that the input x to the LLR term may come from two different distributions, which breaks the
standard synchronous denoising pair (x↵, ↵) into asynchronous. When it’s from data distribution
x ⇠ p(x), z = z↵; and when it’s from some noisy data distribution x ⇠ p⇣(x), z = z� .

From Eq. (8) we see that ✏̂(·, ·) is trained on four pairs: (z↵, ↵), (z� , �), (z� , ↵) and (z↵, �), where
� ⌘ ��1(�(↵)�(⇣)) < min(↵, ⇣) (Eq. 5). During standard training, only the first two pairs are
trained (Eq. 1). This means that our CDL objective trains the denoiser to perform correctly even for
samples from distributions that are noisier or cleaner than the specified noise level (a pair like (z� , ↵)
or (z↵, �)). This can be useful for both sequential and parallel sampling settings. During sequential
sampling, extra error noise added due to discretization errors can be corrected by the denoiser trained
with CDL. As for parallel sampling, CDL helps with evaluations on asymmetric pairs (z� , ↵) or
(z↵, �) which we refer to OOD regions for standard diffusion loss.

In practice, diffusion training pipelines are highly tuned on popular datasets like CIFAR10 and
ImageNet, so the amplitude of discretization errors during sampling is small, meaning that errors
won’t nudge points too far away from the true trajectory. Therefore, when evaluating CDL objective,
we sample some large-valued ⇣s, which corresponds to classifying only small differences in noise
levels. Empirically we find that ⇣ ⇠ Uniform[6, 15] or ⇣ ⇠ logistic[6, 15] performed equally good.

Denoising, sampling dynamics, and the score connection We have focused so far on denoising
and density estimation, but we now want to connect this discussion to the primary use case for
diffusion models and the focus of Sec. 4, sampling. There are many choices in how to implement
sampling dynamics [11], but all of them rely on the score function, rx log p↵(x). The score function
points toward regions of space with high likelihood, and by slowly transitioning (or annealing), from
the score function of a noisy distribution to one closer to the data distribution, we can build reliable
sampling dynamics. To connect denoisers with sampling we must show that a denoising function, ✏̂,
that is optimal according to Eq. 1 also specifies the score function.

rx log p↵(x) = � ✏̂(x, ↵)p
�(�↵)

(9)

The derivation is straightforward and is given in Appendix A.1.

4 Sequential and Parallel Sampling with Diffusion Models

Sampling dynamics are typically presented in terms of a stochastic process {xt}T
t=1 with timestep,

t, rather than in terms of log SNR, ↵. We will denote xt ⌘ x↵(t), pt(x) ⌘ p↵(t)(x), to connect to
our previous notation, with ↵(t) representing a monotonic relationship described in App. B.3. Note
that decreasing log-SNR ↵ corresponds to increase timestep t, since smaller log-SNR means there is
more noise added to the data.
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We have our Contrastive Diffusion Loss: 
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2 Diffusion Model Background: Optimal Denoisers are Density Estimators

The defining feature of diffusion models is a sequence of distributions that progressively add noise
to the data, from which we then learn to recover the original data. The (“variance preserving” [33])
channel that mixes the signal x with Gaussian noise is defined as x↵ ⌘

p
�(↵)x +

p
�(�↵)✏ with

✏ ⇠ N (0, I), x ⇠ p(x), where ↵ represents the log of the Signal-to-Noise Ratio (SNR), p(x) is the
unknown data distribution for x 2 Rd, and �(·) is the sigmoid function. We define the sequence of
intermediate distributions drawn according to this channel with a subscript as p↵(x). By definition,
we express lim↵!1 p↵(x) = p(x) in this paper. Note that we use a different scaling convention for
noise from [11] and [6], where the former one takes x + �✏ as the forward noising channel and the
latter one takes

p
↵tx +

p
1 � ↵t✏ as the forward noising channel. For further detailed relationships

among these scaling conventions, please check App. B.3.

The minimum mean square error (MMSE) estimator ✏̂ for recovering ✏ from the noisy channel that
mixes x and ✏ can be derived via variational calculus and written as follows.

✏̂(x↵, ↵) ⌘ E✏⇠p(✏|x↵)[✏] = arg min
✏̃(·,·)

Ep(✏)p(x)[k✏ � ✏̃(x↵, ↵)k2
2]. (1)

Sampling from the true posterior is typically intractable, but by using a neural network to approximate
the solution to the regression optimization problem, we can get an approximation for ✏̂. From [13],
we see that log-likelihood can be written exactly in terms of an expression that depends only on the
MMSE solution to the Gaussian denoising problem, i.e.

� log p(x) = c + 1/2

Z 1

�1
Ep(✏)[k✏ � ✏̂(x↵, ↵)k2

2] d↵. (2)

The constant, c = d/2 log(2⇡e) � d
2

R 1
0 d↵̄ �(↵̄) does not depend on data and will play no role in

our approach, as it cancels out in our derivations in Sec. 3.

3 What Your Diffusion Model is Hiding: Noise Classifiers

We now introduce our first main result, which shows that diffusion models implicitly define optimal
noise classifiers. Eq. (2) expresses the probability density of the data directly in terms of the denoising
function. If we apply Eq. (2) to the noisy distributions that bridge the data and a Gaussian, p⇣(x),
we can see that all mixture densities can be written in terms of the same optimal denoising function,
✏̂(·, ·). The complete derivation is presented in App. A.2.

� log p⇣(x) = c + 1/2

Z 1

�1
d↵ Ep(✏)[k✏ � b · ✏̂(x↵, �)k2

2] (3)

x↵ ⌘
p

�(↵)x +
p

�(�↵)✏ (4)

� ⌘ ��1(�(⇣)�(↵)), b ⌘
p

�(�↵)/�(��) (5)

Intuitively, if we find the optimal denoising function for the data distribution, it may be hypothesized
that it can denoise an already noisy version of the data distribution. Using Eq. 2, this directly
translates into an expression for density of mixture distributions. Differences in log likelihoods
lead to cancellation of constants, and these Log Likelihood Ratios (LLR) are related to the optimal
classifiers [4] as we show below.

To connect LLRs with classification, consider the following generative model. We generate a random
binary label q(y = ±1) = 1/2. Then, conditioned on y, we sample from some distribution q(x|y).
Given samples (x, y) ⇠ q(x, y) = q(x|y)q(y), the Bayes optimal classifier is:

q(y|x) =
q(x|y)q(y)

q(x)
=

q(x|y)q(y)

q(x|y = 1)q(y = 1) + q(x|y = �1)q(y = �1)

= 1/(1 +
q(x| � y)

q(x|y)
) = 1/(1 + exp(y(log q(x|y = �1) � log q(x|y = 1))))

log q(y|x) = � log(1 + exp(y log
q(x|y = �1)

q(x|y = 1)
)) = � softplus(y log

q(x|y = �1)

q(x|y = 1)
)) (6)
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In the second line, because 8y, q(y) = 1/2, these constants cancel out. Then we can just expand
definitions and re-arrange to write in terms of log probabilities.

Contrastive Diffusion Loss (CDL) Our next contribution is to use the new connection between
diffusion denoisers and noise classifiers to define a new training objective. We set the distributions
q(x|y = 1) and q(x|y = �1) to be two distributions at different noise levels that we can write in terms
of the optimal diffusion denoiser from Eq. 3. So we have q(x|y = 1) ⌘ p(x), the data distribution,
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Sampling steps on OOD regions
Improve denoiser on OOD regions => improve sampling



Better distribution learning with hard constraints
Data Contrastive Standard diffusion

Distribution 
similarity

Compute



Contrastive training improves “FID”
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