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Motivation: Interpretable Models

DNNs are treated like black-box models:

Given an input, the model takes a decision via an un-interpretable decision process.
The model complexity, generally, hinders any potential examination of the underlying
process.

Lack of interpretability

Undesired property, especially in safety- or bias- aware applications ⇒ Crucial research and
societal challenge
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Related Work: Concept Bottleneck Models

Ante-hoc methods: Design models that are inherently interpetable, e.g., Concept
Bottleneck Models (CBMs) [1].

Several drawbacks:
1 Performance degradation compared to standard backbones,
2 Use of dense concept sets, all potentially contributing to the final decision,
3 Not suited for tasks that could exploit multi-granularity information.
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Coarse-to-Fine Concept Bottleneck Models

Our proposal: Coarse-to-Fine Concept Bottleneck Models

A hierarchical approach to concept discovery.

We consider a per-example discovery mechanism to limit concepts associated to each
example, and

Leverage the notion of concept hierarchy to uncover both high and low level image
information.
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Proposed Approach: Concept Discovery Model Block

Extract image and concept embeddings, EI (X ) ∈ RN×K and ET (A) ∈ RH×K with CLIP,

Compute :
Cos Similarity ≜ S ∝ EI (X )ET (A)T ∈ RN×H (1)

Adopt data-driven binary indicators Z ∈ {0, 1}N×H to select a concept subset.

Classify using Y = (Z · S)W T
c

Implementation:

Z are obtained via a data-driven random sampling procedure:

Amortized formulation: introduce a learnable weight matrix W s ∈ RK×H and use the image
embeddings EI (X i ) to drive the process:

q(z i ) = Bernoulli
(
z i |sigmoid

(
EI (X i )W T

s

))
(2)

Advantages: (i) we only store W s , and (ii) can generalize to unseen examples.
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Concept Discovery Model Block
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Coarse-to-Fine Concept Bottleneck Models

Discover concepts that describe the whole image, while exploiting information residing in
patch-specific regions.
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Coarse-to-Fine Concept Bottleneck Models

1 Discover high-level concepts for the whole image using a concept set AH and
indicators ZH ∈ {0, 1}N×H . Each high level concept is described by L low-level attributes.

2 Discover the essential low-level concepts in the context of sub-regions of the image
using the concept set AL and indicators ZL ∈ {0, 1}N×P×H·L.

3 Having discovered which high level concepts are active, we can now further mask the
low-level concepts, i.e., zero-out the ones that are irrelevant, in a top-down way.

4 To formalize the linkage:

[Z ]n,p ∝
∑
h

[ZH ]n,h · [ZL]n,p,h,: ∈ {0, 1}L (3)
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CF-CBM: Experimental Results - Accuracy

Training:
Evidence Lower Bound (ELBO) via Stochastic Gradient Variational Bayes.
AH equals the set of classes and AL the available per-class attributes.

Inference: Draw samples from the learned posterior and investigate the values of Z .

Evaluation metrics: Accuracy and Sparsity (Average Percentage of Activated concepts)

Dataset (Accuracy (%) || Sparsity (%))

Architecture Type Model Concepts Sparsity CUB SUN ImageNet

Non-Interpretable

Baseline (Images) ✗ ✗ 76.70 42.90 76.13

CLIP EmbeddingsH ✗ ✗ 81.90 65.80 79.40

CLIP EmbeddingsL ✗ ✗ 47.80 46.00 62.85

Concept-Based
Whole Image
High Level

Label-Free CBMs [2] ✓ ✓ 74.59 − 71.98

CDMH[3] ✓ ✗ 80.30 66.25 75.22

CDMH[3] ✓ ✓ 78.90||19.00 64.55||13.00 76.55||14.00
CF-CBMH (Ours) ✓ ✓ 79.50||50.00 64.00||47.58 77.40||27.20

Concept-Based
Patches
Low Level

CDML ✓ ✗ 39.05 37.00 49.20

CDML ✓ ✓ 59.62||58.00 42.30||67.00 58.20||25.60
CF-CBML (Ours) ✓ ✓ 73.20||29.80 57.10||28.33 78.45||15.00
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CF-CBM: Experimental Results - Attribute Matching

Classification performance is not appropriate for measuring interpretability.

A new metric for interpretability in the context of concept-based methods given ground
truth attributes: Jaccard Index.

Attribute matching accuracy. We compare our approach to the recent CDM model trained with the
considered AL set. Then, we predict the matching between the inferred per-example concept indicators
to: (i) class-wise and (ii) per-example ground truth attributes found in both SUN and CUB.

Dataset (Matching Accuracy (%)|| Jaccard Index (%))

Model Attribute Set Train Atrribute Set Eval SUN CUB

CDM[3] whole set class-wise 51.43||26.00 39.00||17.20
CDML whole set class-wise 30.95||26.70 25.81||19.60
CF-CBM (Ours) hierarchy class-wise 53.10||28.20 79.85||32.50
CDM[3] whole set example-wise 48.45||15.70 36.15||09.50
CDML whole set example-wise 20.70||15.00 17.65||10.40
CF-CBM (Ours) hierarchy example-wise 49.92||16.80 81.00||17.60
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CF-CBM: Experimental Results - Qualitative Analysis

Figure: A random example from the Black Swan class of ImageNet-1k validation set. On the upper
part, the original concept set corresponding to the class is depicted; on the lower, some of the concepts
discovered via our novel CF-CBM.
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CF-CBM: Experimental Results - Qualitative Analysis

Figure: A random example from the Black Swan class of ImageNet-1k validation set. After training, we
have access to the discovered concepts on both the image and the patch level.
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The End

Thank you!

ArXiV:
arxiv.org/pdf/2310.02116.pdf

GitHub Repository:
github.com/konpanousis/Coarse-To-Fine-CBMs/
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