Motivation 000	Token-Based Image Generation	Main Observation	Further Verification	Visualizations 000
	Image Understandi	ng Makes for A	Good Tokenizer	
	for I	mage Generatior	า	

Luting Wang Yang Zhao¹ Zijian Zhang¹ Jiashi Feng¹ Si Liu^{*} Bingyi Kang^{1*}

¹ByteDance *Corresponding Authors

Friday, December 13

ByteDance

Motivation ●00	Token-Based Image Generation	Main Observation	Further Verification	Visualizations 000
Table of Co	ntents			

- 2 Token-Based Image Generation
- 3 Main Observation
- 4 Further Verification

Lihe Yang, et al. "FreeMask: Synthetic Images with Dense Annotations Make Stronger Segmentation Models." NeurIPS, 2023

Token-Based Image Generation

Main Observation

Further Verification

Visualizations

Image Generation Benefits Image Understanding

Studies have shown that IG models can benefit IU tasks in various ways.

Improved representation learning

Drew A. Hudson, et al. "SODA: Bottleneck Diffusion Models for Representation Learning." arXiv:2311.17901, 2023.

Konpat Preechakul, et al. "Diffusion Autoencoders: Toward a Meaningful and Decodable Representation." CVPR, 2022.

Wang et al. (ByteDance)

Image Generation Benefits Image Understanding

Studies have shown that IG models can benefit IU tasks in various ways.

③ Utilizing **intermediate features** from IG models for solving perception tasks

Soumik Mukhopadhyay, et al. "Diffusion Models Beat GANs on Image Classification." arXiv:2307.08702.

The reciprocal question remains largely uncharted:

How might IU models aid IG tasks?

Motivation 000	Token-Based Image Generation ●000	Main Observation	Further Verification	Visualizations
Table of Cor	ntents			

2 Token-Based Image Generation

- 3 Main Observation
- 4 Further Verification

Moti	va	ti	01	

Token-Based Image Generation ○●○○ Main Observation

Further Verification

Visualizations

Two-Stage Image Generation

- The encoder \mathcal{E} , quantizer \mathcal{Q} , and codebook **C** collectively form an **image tokenizer** \mathcal{T} .
- Given an image $\mathbf{I} \in \mathbb{R}^{H \times W \times 3}$, the **encoder** \mathcal{E} converts this image into a feature map $x \in \mathbb{R}^{h \times w \times d}$.
- Codebook C is a set of N code vectors $\{c_i\}_{i=1}^N \in \mathbb{R}^{N \times d}$, where each code vector $c_i \in \mathbb{R}^d$ corresponds to a specific code *i*.
- Quantizer Q then maps x into a sequence of codes z = {z_i}^L_{i=1}.

Motivation 000	Token-Based Image Generation ○●○○	Main Observation	Further Verification	Visua 000
т.с.				

Two-Stage Image Generation

• The **proposal network** \mathcal{P} models the distribution over **z**, denoted as $p(\mathbf{z})$.

Motivation 000	Token-Based Image Generation ००●०	Main Observation	Further Verification	Visualizations 000
Image Toker	nizers			

Motivation	Token-Based Image Generation	Main Observation	Further Verification	Visualizations
000	○○●○	00		000
Image Toker	nizers			

Patrick Esser, Robin Rombach, et al. "Taming Transformers for High-Resolution Image Synthesis." CVPR, 2021

Motivation 000	Token-Based Image Generation ००●੦	Main Observation	Further Verification	Visualizations 000
Image Toker	nizers			

Fabian Mentzer, David Minnen, et al. "Finite Scalar Quantization: VQ-VAE Made Simple." ICLR, 2024.

 $\begin{array}{c} \mathcal{L}_{\text{rec}} \\ \bullet \end{array} \quad \text{Reconstruction } \widehat{I} \\ \text{(a) VQGAN} \end{array}$

Decoder \mathcal{D}

(b) FSQ

 \mathcal{L}_{rec}

Decoder \mathcal{D}

Reconstruction \hat{I}

Encoder \mathcal{E}

(c) VQ-KD

Encoder \mathcal{E}

Image 1

Zhiliang Peng, Li Dong, et al. "BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers." arXiv preprint arXiv:2208.06366, 2022.

Wang et al. (ByteDance)

Encoder \mathcal{E}

Image I

Image Understanding Makes for A Good Tokenizer

Teacher \mathcal{T}

Pixel Reconstruction

Feature Reconstruction

Wang et al. (ByteDance)

We build the above benchmark to evaluate the IG performance of tokenizers.

- For each tokenizer, we train a proposal network and a decoder to form an image generator.
- Various metrics are adopted for a comprehensive evaluation.

Motivation 000	Token-Based Image Generation	Main Observation ●○	Further Verification	Visualizations
Table of Co	ntents			

2 Token-Based Image Generation

3 Main Observation

4 Further Verification

Motivation 000	Token-Based Image Generation	Main Observation O•	Further Verification	Visualizations 000
Main Observ	vation			

• VQ-KD significantly enhances generation quality over VQGAN.

Tokenizer	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{NAR}\downarrow$
VQGAN	4.9	5.09	116.75	24.11	20.03
FSQ	100.0	4.96	791.56	40.17	29.78
VQ-KD _{CLIP}	100.0	4.96	53.73	11.78	9.51
VQ-KD _{ViT}	100.0	3.69	89.30	11.40	8.45
VQ-KD _{DINO}	100.0	3.41	74.07	13.15	10.21
$VQ-KD_{MAE}$	100.0	4.93	280.06	26.85	16.11

Motivation 000	Token-Based Image Generation	Main Observation ○●	Further Verification	Visualizations
Main Observ	vation			

- **1** VQ-KD significantly enhances generation quality over VQGAN.
- **②** The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.

Tokenizer	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{NAR}\downarrow$
VQGAN	4.9	5.09	116.75	24.11	20.03
FSQ	100.0	4.96	791.56	40.17	29.78
VQ-KD _{CLIP}	100.0	4.96	53.73	11.78	9.51
VQ-KD _{ViT}	100.0	3.69	89.30	11.40	8.45
VQ-KD _{DINO}	100.0	3.41	74.07	13.15	10.21
VQ-KD _{MAE}	100.0	4.93	280.06	26.85	16.11

Motivation 000	Token-Based Image Generation	Main Observation ○●	Further Verification	Visualizations
Main Observ	vation			

- **1** VQ-KD significantly enhances generation quality over VQGAN.
- **②** The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.

Tokenizer	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{NAR}\downarrow$
VQGAN	4.9	5.09	116.75	24.11	20.03
FSQ	100.0	4.96	791.56	40.17	29.78
VQ-KD _{CLIP}	100.0	4.96	53.73	11.78	9.51
VQ-KD _{ViT}	100.0	3.69	89.30	11.40	8.45
VQ-KD _{DINO}	100.0	3.41	74.07	13.15	10.21
$VQ-KD_{MAE}$	100.0	4.93	280.06	26.85	16.11

Motivation 000	Token-Based Image Generation	Main Observation ○●	Further Verification	Visualizations
Main Observ	vation			

- **1** VQ-KD significantly enhances generation quality over VQGAN.
- **②** The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.

Tokenizer	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{NAR}\downarrow$
VQGAN FSQ	4.9 100.0	5.09 4.96	116.75 791.56	24.11 40.17	20.03 29.78
VQ-KD _{CLIP}	100.0	4.96	53.73	11.78	9.51
VQ-KD _{Vit} VQ-KD _{DINO} VQ-KD _{MAF}	100.0 100.0 100.0	3.41 4.93	74.07 280.06	13.15 26.85	10.21 16.11
· · · · · · · · · · · · · · · · · · ·					

Motivation 000	Token-Based Image Generation	Main Observation ○●	Further Verification	Visualizations
Main Observ	vation			

- VQ-KD significantly enhances generation quality over VQGAN.
- **2** The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.
- **③** Tokenizers with stronger semantic understanding tend to deliver superior IG performance.

Tokenizer	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{NAR}\downarrow$
VQGAN	4.9	5.09	116.75	24.11	20.03
FSQ	100.0	4.96	791.56	40.17	29.78
VQ-KD _{CLIP}	100.0	4.96	53.73	11.78	9.51
VQ-KD _{ViT}	100.0	3.69	89.30	11.40	8.45
VQ-KD _{DINO}	100.0	3.41	74.07	13.15	10.21
VQ-KD _{MAE}	100.0	4.93	280.06	26.85	16.11

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification ●○	Visualizations 000
Table of Co	ntents			

- 2 Token-Based Image Generation
- 3 Main Observation
- 4 Further Verification

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification ⊙●	Visualizations
Further Verif	fication			

1 The superiority of VQ-KD holds across proposal networks.

Tokenizer	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{NAR}\downarrow$
VQGAN	4.9	5.09	116.75	24.11	20.03
FSQ	100.0	4.96	791.56	40.17	29.78
VQ-KD _{CLIP}	100.0	4.96	53.73	11.78	9.51
VQ-KD _{ViT}	100.0	3.69	89.30	11.40	8.45
VQ-KD _{DINO}	100.0	3.41	74.07	13.15	10.21
$VQ-KD_{MAE}$	100.0	4.93	280.06	26.85	16.11

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification ⊙●	Visualizations
Further Verif	fication			

1 The superiority of VQ-KD holds across proposal networks.

Tokenizer	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{NAR}\downarrow$
VQGAN	4.9	5.09	116.75	24.11	20.03
FSQ	100.0	4.96	791.56	40.17	29.78
VQ-KD _{CLIP}	100.0	4.96	53.73	11.78	9.51
VQ-KD _{ViT}	100.0	3.69	89.30	11.40	8.45
VQ-KD _{DINO}	100.0	3.41	74.07	13.15	10.21
$VQ-KD_{MAE}$	100.0	4.93	280.06	26.85	16.11

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification ○●	Visualizations 000
Further Veri	fication			

- **1** The superiority of VQ-KD holds across proposal networks.
- ② The superiority of VQ-KD holds across datasets.

Tokenizer ${\mathcal T}$	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{T2I}\downarrow$
VQGAN	2.4	16.21	47.89	38.43	24.11
FSQ	100.0	4.62	1040.02	44.64	23.36
VQ-KD _{CLIP}	82.2	5.48	72.31	29.80	11.17
VQ-KD _{ViT}	100.0	3.70	117.10	23.51	15.49
VQ-KD _{DINO}	100.0	2.69	129.93	17.55	11.50
$VQ-KD_{MAE}$	100.0	3.51	317.98	44.01	15.60

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification ○●	Visualizations 000
Further Veri	fication			

- **1** The superiority of VQ-KD holds across proposal networks.
- ② The superiority of VQ-KD holds across datasets.

Tokenizer ${\mathcal T}$	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{T2I}\downarrow$
VQGAN FSQ	2.4 100.0	16.21 4.62	47.89 1040.02	38.43 44.64	24.11 23.36
VQ-KD _{CLIP}	82.2	5.48	72.31	29.80	11.17
VQ-KD _{DINO} VQ-KD _{DINO}	100.0 100.0 100.0	2.69 3.51	129.93 317.98	17.55 44.01	11.50 15.60

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification ○●	Visualizations 000
Further Veri	fication			

- The superiority of VQ-KD holds across proposal networks.
- ② The superiority of VQ-KD holds across datasets.
- The superiority of VQ-KD holds across tasks.

Tokenizer ${\cal T}$	Codebook Usage (%)	$rFID\downarrow$	$PPL\downarrow$	$FID_{AR}\downarrow$	$FID_{T2I}\downarrow$
VQGAN	2.4	16.21	47.89	38.43	24.11
FSQ	100.0	4.62	1040.02	44.64	23.36
VQ-KD _{CLIP}	82.2	5.48	72.31	29.80	11.17
VQ-KD _{VIT}	100.0	3.70	117.10	23.51	15.49
VQ-KD _{DINO}	100.0	2.69	129.93	17.55	11.50
VQ-KD _{MAE}	100.0	3.51	317.98	44.01	15.60

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification	Visualizations ●00
Table of Co	ntents			

- 2 Token-Based Image Generation
- 3 Main Observation
- 4 Further Verification

Motiv	va	ti	

Token-Based Image Generation

Main Observation

Further Verification

Visualizations 000

Results

VQ-KD visualization of

- the original images,
- The reconstructed images,
- The AR generation,
- The NAR generation.

Motivation 000	Token-Based Image Generation	Main Observation	Further Verification	Visualizations
Codebook				

• Compared to VQGAN, the organized feature space of VQ-KD improves the **clarity of code semantics** and helps to **better understand** image content and code interaction.

Codebook visualization of VQGAN and VQ-KD_{ViT}.

Wang et al. (ByteDance)

Image Understanding Makes for A Good Tokenizer

Contact Us

- arxiv.org/abs/2411.04406
- @ lutingwang.ai@qq.com
- https://github.com/magic-research/vector_quantization

ByteDance

