



## **Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting**

Zongjiang Shang, Ling Chen\*, Binqing Wu, Dongliang Cui College of Computer Science and Technology, Zhejiang University, China

Presenter: Zongjiang Shang

#### **Motivations**

Two key challenges limit the performance of Transformer in multi-scale temporal pattern interaction modeling.

- Semantic information sparsity. Individual time points contain less semantic information, and pair-wise interactions may cause the information utilization bottleneck.
- **Temporal variations entanglement.** Multiple inherent temporal variations (e.g., rising, falling, and fluctuating) entangled in temporal pattern, bringing challenges for time series forecasting.

### Contributions

Ada-MSHyper is **the first work** that incorporates adaptive hypergraph modeling into time series forecasting.

- An adaptive hypergraph learning module is designed to model abundant and implicit **group-wise node interactions** at different scales.
- A node and hyperedge constraint mechanism is introduced to cluster nodes with **similar semantic information** and **differentiate the temporal variations** within each scales.
- Experimental results on 11 real-world datasets demonstrate that Ada-MSHyper achieves **state-of-the-art** performance.

## Method: Ada-MSHyper

#### Framework



(a) The MFE module maps the input sequence into subsequences at different scales. (b) The AHL module provides foundations for modeling group-wise interactions. (c) The multi-scale interaction module models group-wise pattern interactions at different scales.

### Method: Ada-MSHyper

#### Node and hyperedge constraint (NHC) mechanism



(a) The generation of hyperedge features. (b) The generation of node loss. (c) The generation of hyperedge loss.

#### Visualization



With the NHC mechanism, Ada-MSHper can not only cluster nodes with similar semantic information but also reduce noise interference.

#### **Evaluations**

# The results of long-range time series forecasting<br/>under multivariate settings.The results of short-range time series forecasting<br/>under multivariate settings.

| Models      |                         | Ada-MSHyper<br>(Ours)            |                                  | iTransformer<br>(2024)                                                                  |                                                   | MSHyper*<br>(2024)                      |                                  | TimeMixer* MS<br>(2024) (?                                                           |                                                   | MSG<br>(20                                                      | iNet* CrossGNN*<br>(24) (2023)   |                                                                             | PatchTST<br>(2023)                                |                                                                          | Crossformer<br>(2023)                                                       |                                  | TimesNet<br>(2023)               |                                  | DLinear<br>(2023)                |                                  | FiLM*<br>(2022)                  |                                  | FEDformer<br>(2022)                     |                                  | Autoformer<br>(2021)             |                                  |                                  |
|-------------|-------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Metric      |                         | MSE                              | MAE                              | MSE                                                                                     | MAE                                               | MSE                                     | MAE                              | MSE                                                                                  | MAE                                               | MSE                                                             | MAE                              | MSE                                                                         | MAE                                               | MSE                                                                      | MAE                                                                         | MSE                              | MAE                              | MSE                              | MAE                              | MSE                              | MAE                              | MSE                              | MAE                                     | MSE                              | MAE                              | MSE                              | MAE                              |
| Weather     | 96<br>192<br>336<br>720 | 0.157<br>0.218<br>0.251<br>0.304 | 0.195<br>0.259<br>0.252<br>0.328 | 0.174<br>0.221<br>0.278<br>0.358                                                        | 0.214<br>0.254<br>0.296<br>0.347                  | 0.170<br>0.218<br>0.269<br>0.343        | 0.223<br>0.253<br>0.300<br>0.341 | 0.163<br>0.212<br><u>0.263</u><br>0.343                                              | 0.210<br>0.257<br>0.292<br>0.345                  | 0.163<br>0.212<br>0.272<br>0.350                                | 0.212<br>0.254<br>0.299<br>0.348 | 0.159<br>0.211<br>0.267<br>0.352                                            | 0.218<br>0.266<br>0.310<br>0.362                  | 0.177<br>0.225<br>0.278<br>0.354                                         | 0.218<br>0.259<br>0.297<br>0.348                                            | 0.158<br>0.206<br>0.272<br>0.398 | 0.230<br>0.277<br>0.335<br>0.418 | 0.172<br>0.219<br>0.280<br>0.365 | 0.220<br>0.261<br>0.306<br>0.359 | 0.196<br>0.237<br>0.283<br>0.345 | 0.255<br>0.296<br>0.335<br>0.381 | 0.199<br>0.228<br>0.267<br>0.319 | 0.262<br>0.288<br>0.323<br>0.361        | 0.217<br>0.276<br>0.339<br>0.403 | 0.296<br>0.336<br>0.380<br>0.428 | 0.266<br>0.307<br>0.359<br>0.419 | 0.336<br>0.367<br>0.395<br>0.428 |
| Electricity | 96<br>192<br>336<br>720 | 0.135<br>0.152<br>0.168<br>0.212 | 0.238<br>0.239<br>0.266<br>0.293 | $\begin{array}{c} \frac{0.148}{0.162}\\ \frac{0.178}{0.178}\\ \hline 0.225 \end{array}$ | $\frac{\frac{0.240}{0.253}}{\frac{0.269}{0.317}}$ | 0.176<br>0.173<br>0.195<br>0.219        | 0.261<br>0.260<br>0.297<br>0.315 | 0.153<br>0.166<br>0.185<br>0.225                                                     | 0.247<br>0.256<br>0.277<br>0.310                  | 0.165<br>0.184<br>0.195<br>0.231                                | 0.274<br>0.292<br>0.302<br>0.332 | 0.173<br>0.195<br>0.206<br>0.231                                            | 0.275<br>0.288<br>0.300<br>0.335                  | 0.181<br>0.188<br>0.204<br>0.246                                         | 0.270<br>0.274<br>0.293<br>0.324                                            | 0.219<br>0.231<br>0.246<br>0.280 | 0.314<br>0.322<br>0.337<br>0.363 | 0.168<br>0.184<br>0.198<br>0.220 | 0.272<br>0.289<br>0.300<br>0.320 | 0.197<br>0.196<br>0.209<br>0.245 | 0.282<br>0.285<br>0.301<br>0.333 | 0.198<br>0.198<br>0.217<br>0.278 | 0.274<br>0.278<br>0.300<br>0.356        | 0.193<br>0.201<br>0.214<br>0.246 | 0.308<br>0.315<br>0.329<br>0.355 | 0.201<br>0.222<br>0.231<br>0.254 | 0.317<br>0.334<br>0.338<br>0.361 |
| ETThl       | 96<br>192<br>336<br>720 | 0.372<br>0.433<br>0.422<br>0.445 | 0.393<br>0.417<br>0.433<br>0.459 | 0.386<br>0.441<br>0.487<br>0.503                                                        | 0.405<br>0.436<br>0.458<br>0.491                  | 0.392<br>0.440<br>0.480<br>0.508        | 0.407<br>0.426<br>0.453<br>0.493 | 0.385<br>0.443<br>0.512<br>0.498                                                     | 0.402<br>0.430<br>0.470<br>0.476                  | $\begin{array}{c} 0.390 \\ 0.442 \\ 0.480 \\ 0.494 \end{array}$ | 0.411<br>0.442<br>0.468<br>0.488 | 0.382<br>0.427<br>0.465<br>0.472                                            | $\frac{\frac{0.398}{0.425}}{\frac{0.445}{0.468}}$ | 0.414<br>0.460<br>0.501<br>0.500                                         | 0.419<br>0.445<br>0.466<br>0.488                                            | 0.423<br>0.471<br>0.570<br>0.653 | 0.448<br>0.474<br>0.546<br>0.621 | 0.384<br>0.436<br>0.491<br>0.521 | 0.402<br>0.429<br>0.469<br>0.500 | 0.386<br>0.437<br>0.481<br>0.519 | 0.400<br>0.432<br>0.459<br>0.516 | 0.438<br>0.493<br>0.547<br>0.586 | 0.433<br>0.466<br>0.495<br>0.538        | 0.376<br>0.420<br>0.459<br>0.506 | 0.419<br>0.448<br>0.465<br>0.507 | 0.449<br>0.500<br>0.521<br>0.514 | 0.459<br>0.482<br>0.496<br>0.512 |
| ETTh2       | 96<br>192<br>336<br>720 | 0.283<br>0.358<br>0.428<br>0.413 | 0.332<br>0.374<br>0.437<br>0.432 | 0.297<br>0.380<br>0.428<br>0.427                                                        | 0.349<br>0.400<br><b>0.432</b><br>0.445           | 0.300<br>0.384<br>0.443<br><b>0.412</b> | 0.351<br>0.400<br>0.438<br>0.441 | 0.296<br>0.376<br>0.434<br>0.464                                                     | 0.347<br>0.394<br>0.443<br>0.464                  | 0.328<br>0.402<br>0.435<br>0.417                                | 0.371<br>0.414<br>0.443<br>0.441 | 0.309<br>0.390<br><b>0.426</b><br>0.445                                     | 0.359<br>0.406<br>0.444<br>0.464                  | 0.302<br>0.388<br><b>0.426</b><br>0.431                                  | $\begin{array}{c} 0.348 \\ 0.400 \\ \underline{0.433} \\ 0.446 \end{array}$ | 0.745<br>0.877<br>1.043<br>1.104 | 0.584<br>0.656<br>0.731<br>0.763 | 0.340<br>0.402<br>0.452<br>0.462 | 0.374<br>0.414<br>0.452<br>0.468 | 0.333<br>0.477<br>0.594<br>0.831 | 0.387<br>0.476<br>0.541<br>0.657 | 0.322<br>0.404<br>0.435<br>0.447 | 0.364<br>0.414<br>0.445<br>0.458        | 0.358<br>0.429<br>0.496<br>0.463 | 0.397<br>0.439<br>0.487<br>0.474 | 0.346<br>0.456<br>0.482<br>0.515 | 0.388<br>0.452<br>0.486<br>0.511 |
| ETTm1       | 96<br>192<br>336<br>720 | 0.301<br>0.345<br>0.375<br>0.437 | 0.354<br>0.375<br>0.397<br>0.435 | 0.334<br>0.377<br>0.426<br>0.491                                                        | 0.368<br>0.391<br>0.420<br>0.459                  | 0.348<br>0.392<br>0.426<br>0.483        | 0.369<br>0.391<br>0.410<br>0.448 | $\begin{array}{r} 0.318 \\ \hline 0.366 \\ \hline 0.396 \\ \hline 0.454 \end{array}$ | $\frac{\frac{0.356}{0.385}}{\frac{0.404}{0.441}}$ | 0.319<br>0.376<br>0.417<br>0.481                                | 0.366<br>0.397<br>0.422<br>0.458 | 0.335<br>0.372<br>0.403<br>0.461                                            | 0.373<br>0.390<br>0.411<br>0.442                  | 0.329<br>0.367<br>0.399<br><u>0.454</u>                                  | 0.367<br>0.385<br>0.410<br>0.439                                            | 0.404<br>0.450<br>0.532<br>0.666 | 0.426<br>0.451<br>0.515<br>0.589 | 0.338<br>0.374<br>0.410<br>0.478 | 0.375<br>0.387<br>0.411<br>0.450 | 0.345<br>0.380<br>0.413<br>0.474 | 0.372<br>0.389<br>0.413<br>0.453 | 0.353<br>0.389<br>0.421<br>0.481 | 0.370<br>0.387<br>0.408<br>0.441        | 0.379<br>0.426<br>0.445<br>0.543 | 0.419<br>0.441<br>0.459<br>0.490 | 0.505<br>0.553<br>0.621<br>0.671 | 0.475<br>0.496<br>0.537<br>0.561 |
| ETTm2       | 96<br>192<br>336<br>720 | 0.165<br>0.230<br>0.282<br>0.375 | 0.257<br>0.307<br>0.328<br>0.396 | 0.180<br>0.250<br>0.311<br>0.412                                                        | 0.264<br>0.309<br>0.348<br>0.407                  | 0.183<br>0.257<br>0.335<br>0.410        | 0.267<br>0.313<br>0.361<br>0.402 | $\begin{array}{r} 0.175 \\ 0.241 \\ 0.303 \\ \hline 0.391 \end{array}$               | 0.258<br>0.304<br>0.343<br>0.394                  | 0.177<br>0.247<br>0.312<br>0.414                                | 0.262<br>0.307<br>0.346<br>0.403 | $\begin{array}{r} 0.176 \\ \underline{0.240} \\ 0.304 \\ 0.406 \end{array}$ | 0.266<br>0.307<br>0.345<br>0.400                  | $\begin{array}{r} \underline{0.175}\\ 0.241\\ 0.305\\ 0.402 \end{array}$ | 0.259<br>0.302<br>0.343<br>0.400                                            | 0.287<br>0.414<br>0.597<br>1.730 | 0.366<br>0.492<br>0.542<br>1.042 | 0.187<br>0.249<br>0.321<br>0.408 | 0.267<br>0.309<br>0.351<br>0.403 | 0.193<br>0.284<br>0.369<br>0.554 | 0.292<br>0.362<br>0.427<br>0.522 | 0.183<br>0.248<br>0.309<br>0.410 | 0.266<br>0.305<br><u>0.343</u><br>0.400 | 0.203<br>0.269<br>0.325<br>0.421 | 0.287<br>0.328<br>0.366<br>0.415 | 0.255<br>0.281<br>0.339<br>0.433 | 0.339<br>0.340<br>0.372<br>0.432 |
| Traffic     | 96<br>192<br>336<br>720 | 0.384<br>0.401<br>0.423<br>0.453 | 0.248<br>0.258<br>0.261<br>0.282 | $\begin{array}{c} \frac{0.395}{0.417}\\ \underline{0.433}\\ 0.467\end{array}$           | 0.268<br>0.276<br>0.283<br>0.302                  | 0.413<br>0.422<br>0.438<br>0.457        | 0.272<br>0.274<br>0.292<br>0.292 | 0.473<br>0.473<br>0.508<br>0.512                                                     | 0.288<br>0.296<br>0.312<br>0.318                  | 0.605<br>0.613<br>0.642<br>0.702                                | 0.344<br>0.359<br>0.376<br>0.401 | 0.570<br>0.577<br>0.588<br>0.597                                            | 0.310<br>0.321<br>0.324<br>0.337                  | 0.462<br>0.466<br>0.482<br>0.514                                         | 0.295<br>0.296<br>0.304<br>0.322                                            | 0.522<br>0.530<br>0.558<br>0.589 | 0.290<br>0.293<br>0.305<br>0.328 | 0.593<br>0.617<br>0.629<br>0.640 | 0.321<br>0.336<br>0.336<br>0.350 | 0.650<br>0.598<br>0.605<br>0.645 | 0.396<br>0.370<br>0.373<br>0.394 | 0.647<br>0.600<br>0.610<br>0.691 | 0.384<br>0.361<br>0.367<br>0.425        | 0.587<br>0.604<br>0.621<br>0.626 | 0.366<br>0.373<br>0.383<br>0.382 | 0.613<br>0.616<br>0.622<br>0.660 | 0.388<br>0.382<br>0.337<br>0.408 |

#### MSHyper Ada-MSHvp iTransforme TimeMixer WITRAN PatchTS' Crossforme FEDformer Pyraformer Autoformer Dlinear Models (Ours) (2024) (2024) (2024)(2023) (2023) (2023) (2023) (2022) (2022) (2021) Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAI MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 0.534 0.50 0.562 0.52 0.682 0.569 0.602 0.66 0.593 0.56 0.877 1.204 0.699 0.61 1.015 0.79 0.695 0.626 1440 0.616 0.498 0.620 0.556 0.667 0.578 0.793 0.625 0.705 0.878 0.661 0.607 0.863 1.175 0.621 0.56 1.075 0.833 0.876 0.696 ETTh1 0.689 0.627 0.775 0.623 1800 0 758 0 624 0 877 0 643 0 775 0.623 0 849 1 163 0.852.0.704 0.780.0.631 07460658 0 806 0 649 1 111 0 844 2160 0.779 0.635 1.102 0.736 0 998 0 721 1.007 0.686 0.852 1.171 0 851 0 66 783 0 667 1 095 0 82 0 935 0 71 1 129 0 84 0.426 0.461 0.486 0.488 0.464 0.469 0.483 0.480 0.453 0.730 0.61 0.514 0.52 3.224 1.45 0.5590.54432 0.47 1.481 0.91 0 513 0 501 1440 0 465 0 437 0 512 0 507 0 524 0 506 0 547 0 510 1 1 4 4 0 770 1 901 1 044 0 578 0 546 3 254 1 548 0.638.0.708 ETTh<sub>2</sub> 1800 0.503 0.505 0.565 0.529 0.522 0.496 0.606 0.544 0.626 0.610 0 517 0 50 1.327 0.840 3.109 1.486 0.645 0.584 3.328 1.565 0.776 0.689 0.527 0.515 0.600 0.546 0.542 0.510 0.616 0.557 0.657 0.619 0.547 0.519 1.670 0.919 3.630 1.485 0.762 0.639 3.246 1.46 2160 ---0.460 0.445 0.534 0.483 0.520 0.465 0.502 0.465 0.514 0.479 2,588 1.230 0.513 0.499 1.071 0.79 0.651 0.551 1080 0 494 0 4 1440 0.473 0.449 0 556 0 495 0 542 0 477 0 523 0 488 0.543 0 508 0 46 0.534 0.491 2 946 1 349 0.511 0.494 1.136 0.834 0.602.0.542 ETTm1 0.504 0.434 1800 0.492 0.475 0.571.0.501 0.564 0.490 0.526 0.487 0.550 0.497 0.556.0.507 4.113 1.602 0.514 0.496 1.111.0.812 0.641 0.558 2160 0 555 0 499 0 550 0 487 0.542 0.491 0 569 0.481 0.507 0.481 0 556 0 515 4 574 1 743 0.551 0.516 1 054 0 804 1080 0.404 0.416 0 463 0 438 0 464 0 430 0 450 0 4 0 449 0 0 559 0 519 2 587 1 230 0 501 0 469 4 879 1 733 0.527 0.489 415043 0.413 0.429 0 475 0 452 0 475 0 449 0 471 0 452 0 475 0 452 2 946 1 349 4 429 1 708 0 519 0 489 1440 0 699 0 593 0 495 0 480 ETTm2 1800 0.435 0.432 0.468 0.453 0.454 0.449 0.464 0.452 0.479 0.410 0.456 0.449 0.721 0.612 4.113 1.602 0.477 0.474 4.502 1.780 0.503 0.496

4 454 1 758

# The results of long-range time series forecasting under univariate settings.

| Models |                         | Ada-MSHyper<br>(Ours)                                    | iTransfomer*<br>(2024)                                                                                        | MSHyper*<br>(2024)                                                                                                       | TimeMixer*<br>(2024)                                            | PatchTST*<br>(2023)                                      | DLinear<br>(2023)                                                                                                                                               | Crossformer<br>(2023)                                    | Pyraformer<br>(2022)                                     | FEDformer<br>(2022)                                      | Autoformer<br>(2021)                                     | Informer<br>(2021)                                                                              |
|--------|-------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Metri  | ic                      | MSE MAE                                                  | MSE MAE                                                                                                       | MSE MAE                                                                                                                  | MSE MAE                                                         | MSE MAE                                                  | MSE MAE                                                                                                                                                         | MSE MAE                                                  | MSE MAE                                                  | MSE MAE                                                  | MSE MAE                                                  | MSE MAE                                                                                         |
| ETTh1  | 96<br>192<br>336<br>720 | 0.057 0.173<br>0.072 0.198<br>0.070 0.213<br>0.085 0.228 | $\begin{array}{c} 0.059 \ 0.185 \\ 0.073 \ 0.208 \\ \hline 0.084 \ 0.223 \\ \hline 0.089 \ 0.236 \end{array}$ | 0.056 0.181<br>0.076 0.211<br>0.090 0.236<br>0.096 0.245                                                                 | 0.057 0.181<br>0.072 0.204<br>0.085 0.227<br>0.083 0.227        | 0.056 0.181<br>0.076 0.210<br>0.094 0.242<br>0.101 0.250 | 0.056 0.180<br>0.071 0.204<br>0.098 0.244<br>0.189 0.359                                                                                                        | 0.076 0.216<br>0.085 0.225<br>0.106 0.257<br>0.128 0.287 | 0.099 0.277<br>0.174 0.346<br>0.198 0.370<br>0.209 0.348 | 0.079 0.215<br>0.104 0.245<br>0.119 0.270<br>0.142 0.299 | 0.071 0.206<br>0.114 0.262<br>0.107 0.258<br>0.126 0.283 | 0.193 0.377<br>0.217 0.395<br>0.202 0.381<br>0.183 0.355                                        |
| ETTh2  | 96<br>192<br>336<br>720 | 0.116 0.262<br>0.168 0.323<br>0.177 0.350<br>0.221 0.380 | 0.136 0.287<br>0.187 0.342<br>0.219 0.374<br>0.253 0.403                                                      | $\begin{array}{c} 0.117 \\ 0.266 \\ \hline 0.172 \\ 0.325 \\ \hline 0.211 \\ 0.362 \\ \hline 0.248 \\ 0.398 \end{array}$ | 0.133 0.283<br>0.190 0.341<br>0.226 0.379<br><u>0.241 0.396</u> | 0.130 0.276<br>0.181 0.331<br>0.226 0.379<br>0.253 0.406 | 0.131 0.279<br>0.176 0.329<br>0.209 0.367<br>0.276 0.426                                                                                                        | 0.125 0.273<br>0.187 0.334<br>0.227 0.377<br>0.266 0.410 | 0.152 0.303<br>0.197 0.370<br>0.238 0.385<br>0.274 0.435 | 0.128 0.271<br>0.185 0.330<br>0.231 0.378<br>0.278 0.420 | 0.153 0.306<br>0.204 0.351<br>0.246 0.389<br>0.268 0.409 | $\begin{array}{c} 0.213 \ 0.373 \\ 0.227 \ 0.387 \\ 0.242 \ 0.401 \\ 0.291 \ 0.439 \end{array}$ |
| ETTm1  | 96<br>192<br>336<br>720 | 0.027 0.118<br>0.038 0.148<br>0.052 0.165<br>0.071 0.206 | 0.029 0.127<br>0.045 0.162<br>0.059 0.189<br>0.080 0.218                                                      | 0.029 0.127<br>0.044 0.159<br>0.059 0.186<br>0.080 0.217                                                                 | 0.029 0.128<br>0.044 0.160<br>0.058 0.185<br>0.081 0.218        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   | $\begin{array}{c} 0.028 \\ 0.045 \\ 0.045 \\ 0.061 \\ 0.080 \\ 0.210 \\ \end{array}$                                                                            | 0.035 0.145<br>0.055 0.180<br>0.072 0.209<br>0.097 0.248 | 0.127 0.281<br>0.205 0.343<br>0.302 0.457<br>0.387 0.485 | 0.033 0.140<br>0.058 0.186<br>0.084 0.231<br>0.102 0.250 | 0.056 0.183<br>0.081 0.216<br>0.076 0.218<br>0.110 0.267 | 0.109 0.277<br>0.151 0.310<br>0.427 0.591<br>0.438 0.586                                        |
| ETTm2  | 96<br>192<br>336<br>720 | 0.051 0.163<br>0.089 0.207<br>0.114 0.240<br>0.156 0.310 | 0.071 0.193<br>0.109 0.248<br>0.141 0.289<br>0.190 0.343                                                      | 0.071 0.194<br>0.102 0.238<br>0.129 0.274<br>0.176 0.324                                                                 | 0.068 0.187<br>0.101 0.236<br>0.133 0.278<br>0.183 0.332        | 0.071 0.192<br>0.102 0.237<br>0.130 0.274<br>0.179 0.328 | $\begin{array}{c c} 0.063 & \underline{0.183} \\ 0.092 & \underline{0.227} \\ \hline 0.119 & \underline{0.261} \\ \hline 0.175 & \underline{0.320} \end{array}$ | 0.058 0.183<br>0.105 0.237<br>0.133 0.280<br>0.181 0.324 | 0.074 0.208<br>0.116 0.252<br>0.143 0.295<br>0.197 0.338 | 0.067 0.198<br>0.102 0.245<br>0.130 0.279<br>0.178 0.325 | 0.065 0.189<br>0.118 0.256<br>0.154 0.305<br>0.182 0.335 | 0.088 0.225<br>0.132 0.283<br>0.180 0.336<br>0.300 0.435                                        |

## The results of ultra-long-range time series forecasting under multivariate settings.

0 467 0 454

463 0 451

0 473 0 459

| Models |                | Ada-MSHyper<br>(Ours)                     | iTransformer*<br>(2024)                                             | MSHyper*<br>(2024)                        | TimeMixer*<br>(2024)                      | PatchTST<br>(2023)                        | TimesNet<br>(2023)                                                       | DLinear<br>(2023)                                                              | Crossformer<br>(2023)                                                          | SCINet<br>(2022)                                                                           | FEDformer<br>(2022)                       | Autoformer<br>(2021)                      |
|--------|----------------|-------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Metric |                | MSE MAE                                   | MSE MAE                                                             | MSE MAE                                   | MSE MAE                                   | MSE MAE                                   | MSE MAE                                                                  | MSE MAE                                                                        | MSE MAE                                                                        | MSE MAE                                                                                    | MSE MAE                                   | MSE MAE                                   |
| PEMS03 | 12<br>24<br>48 | 0.060 0.165<br>0.075 0.184<br>0.120 0.230 | 0.071 0.174<br>0.093 0.201<br>0.125 0.236                           | 0.106 0.207<br>0.126 0.207<br>0.138 0.265 | 0.161 0.323<br>0.181 0.352<br>0.222 0.407 | 0.099 0.216<br>0.142 0.259<br>0.211 0.319 | 0.085 0.192<br>0.118 0.223<br>0.155 0.260                                | 0.122 0.243<br>0.201 0.317<br>0.333 0.425                                      | 0.090 0.203<br>0.121 0.240<br>0.202 0.317                                      | $\frac{\underbrace{0.066}_{0.085} \underbrace{0.172}_{0.198}}{0.127}$                      | 0.126 0.251<br>0.149 0.275<br>0.227 0.348 | 0.272 0.385<br>0.334 0.440<br>1.032 0.782 |
| PEMS04 | 12<br>24<br>48 | 0.068 0.173<br>0.080 0.189<br>0.093 0.204 | 0.078 0.183<br>0.095 0.205<br>0.120 0.233                           | 0.103 0.197<br>0.148 0.245<br>0.191 0.308 | 0.168 0.344<br>0.183 0.362<br>0.199 0.383 | 0.105 0.224<br>0.153 0.275<br>0.229 0.339 | 0.087 0.195<br>0.103 0.215<br>0.136 0.250                                | $\begin{array}{c} 0.148\ 0.272\\ 0.224\ 0.340\\ 0.355\ 0.437\end{array}$       | 0.098 0.218<br>0.131 0.256<br>0.205 0.326                                      | $\frac{\underbrace{0.073}_{0.084}}{\underbrace{0.099}_{0.211}} \underbrace{0.177}_{0.211}$ | 0.138 0.262<br>0.177 0.293<br>0.270 0.368 | 0.424 0.491<br>0.459 0.509<br>0.646 0.610 |
| PEMS07 | 12<br>24<br>48 | 0.055 0.154<br>0.065 0.172<br>0.107 0.204 | $\begin{array}{c} 0.067\\ 0.165\\ 0.088\\ 0.110\\ 0.215\end{array}$ | 0.137 0.256<br>0.111 0.225<br>0.137 0.221 | 0.151 0.322<br>0.169 0.348<br>0.196 0.384 | 0.095 0.207<br>0.150 0.262<br>0.253 0.340 | $\begin{array}{c} 0.082\ 0.181\\ 0.101\ 0.204\\ 0.134\ 0.238\end{array}$ | $\begin{array}{c} 0.115 \ 0.242 \\ 0.210 \ 0.329 \\ 0.398 \ 0.458 \end{array}$ | 0.094 0.200<br>0.139 0.247<br>0.311 0.369                                      | $\begin{array}{c} 0.068 \ 0.171 \\ 0.119 \ 0.225 \\ 0.149 \ 0.237 \end{array}$             | 0.109 0.225<br>0.125 0.244<br>0.165 0.288 | 0.199 0.336<br>0.323 0.420<br>0.390 0.470 |
| PEMS08 | 12<br>24<br>48 | 0.063 0.165<br>0.109 0.229<br>0.159 0.238 | 0.079 0.182<br>0.115 0.219<br>0.186 0.235                           | 0.113 0.209<br>0.230 0.248<br>0.317 0.324 | 0.162 0.337<br>0.181 0.364<br>0.224 0.422 | 0.168 0.232<br>0.224 0.281<br>0.321 0.354 | 0.112 0.212<br>0.141 0.238<br>0.198 0.283                                | $\begin{array}{c} 0.154 \ 0.276 \\ 0.248 \ 0.353 \\ 0.440 \ 0.470 \end{array}$ | $\begin{array}{c} 0.165 \ 0.214 \\ 0.215 \ 0.260 \\ 0.315 \ 0.355 \end{array}$ | $\begin{array}{c} 0.087\ 0.184\\ 0.122\ \underline{0.221}\\ 0.189\ 0.270\end{array}$       | 0.173 0.273<br>0.210 0.301<br>0.320 0.394 | 0.436 0.485<br>0.467 0.502<br>0.966 0.733 |





## Thank you for your lisenting!

Presenter: Zongjiang Shang