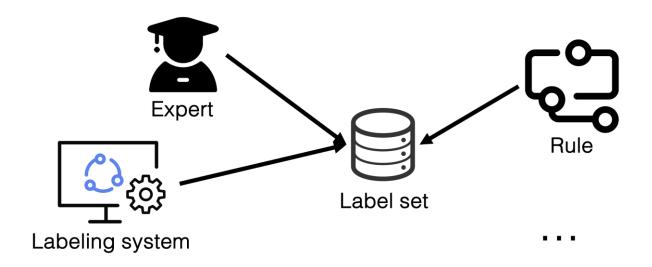


Collaborative Refining for Learning from Inaccurate Labels

Bin Han, Yi-Xuan Sun, Ya-Lin Zhang, Libang Zhang, Haoran Hu Longfei Li, Jun Zhou[†], Guo Ye, Huimei He

Background



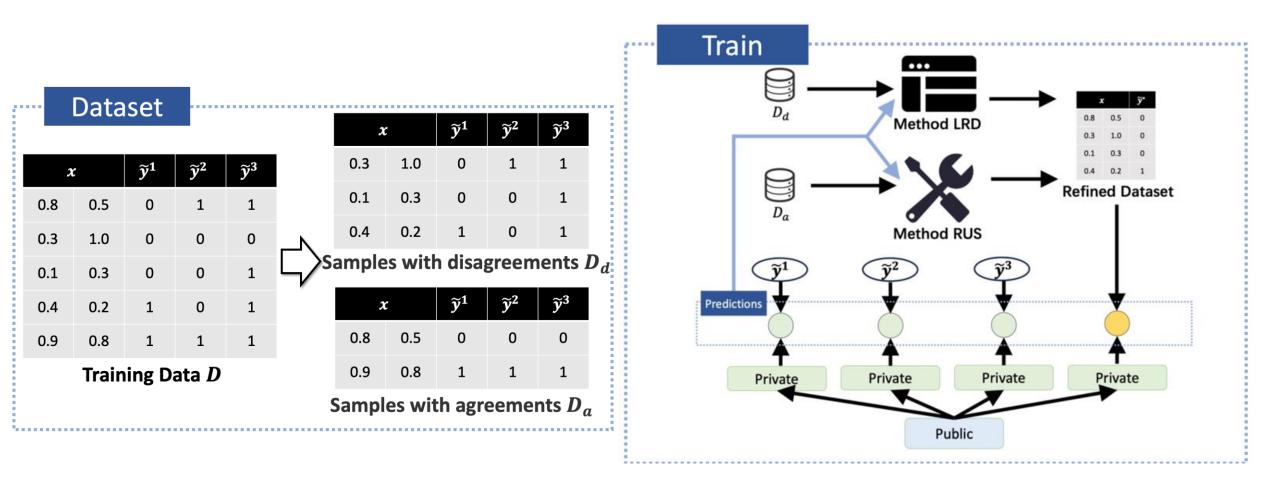
In industry, obtaining accurate labels can often be costly and time-consuming. Instead, **noisy labels from multiple sources** are more convenient to collect.

Overview

The Collaborative Refining for Learning from Inaccurate Labels (CRL) framework operates in two main steps:

- Partitioning the Dataset.
- Refining Labels and Samples:
 - For samples with disagreement, we propose a method called Label Refining for Disagreements (LRD) to get reliable labels
 - For samples where annotators agree, we apply **Robust Union Selection (RUS)** to select the most trustworthy samples based on theoretical bounds.

CRL: Overall Framework



LRD: Label Refining for Samples with Disagreements

Theorem 1. Let $(\boldsymbol{x}, y^*, \tilde{y}^0, \tilde{y}^1)$ be any sample with ground-truth label y^* and two conflicting labels \tilde{y}^0 , \tilde{y}^1 from two annotators, i.e., $\tilde{y}^0 \neq \tilde{y}^1$. Assume T^0 and T^1 satisfy $T^0_{ii} > 0.5$ and $T^1_{ii} > 0.5$, $\forall i \in \{0,1\}$, $\ell(f_{\Theta_0^*}(\boldsymbol{x}), \tilde{y}^0) < \ell(f_{\Theta_1^*}(\boldsymbol{x}), \tilde{y}^1)$ if and only if $y^* = \tilde{y}^0$.

Corollary 1. Let $(\boldsymbol{x}, y^*, \{\tilde{y}^r\}_{r=1}^R)$ be any sample with ground-truth label y^* and R conflicting labels $\{\tilde{y}^r\}_{r=1}^R$ from R annotators, i.e., $\exists r_0, r_1 \subseteq \{1, ..., R\}$, $\tilde{y}^{r_0} \neq \tilde{y}^{r_1}$. Assume $T_{ii}^r > 0.5$, $\forall i \in \{0, 1\}$ and $r \in \{1, ..., R\}$, if $\ell(f_{\Theta_k^*}(\boldsymbol{x}), \tilde{y}^k) = \min(\{\ell(f_{\Theta_r^*}(\boldsymbol{x}), \tilde{y}^r)\}_{r=1}^R), y^* = \tilde{y}^k$.

• The most reliable index k for sample x_i is acquired through:

$$k = \underset{r}{\operatorname{argmin}} \{\ell(f_{\Theta_r}(\boldsymbol{x}_i), \tilde{y}_i^r)\}_{r=1}^R$$

RUS: Robust Union Selection

• The average loss

$$\tilde{\mu}_i = \frac{1}{R} \sum_{r=1}^R \ell(f_{\Theta_r}(\boldsymbol{x}_i), \tilde{y}_i^r)$$

• Smooth function

$$\phi(z) = \log(1 + z + \frac{z^2}{2})$$

• Selection criterion for sample x_i

$$\tilde{\mu}_i^{\phi} = \frac{1}{R|T|} \sum_{r=1}^R \sum_{t \in T} \phi(\ell(f_{\Theta_r^t}(\boldsymbol{x}_i), \tilde{y}_i^r))$$

$$c_i = \tilde{\mu}_i^{\phi} - \frac{\tilde{\sigma}_i^2 \left(n + \frac{\tilde{\sigma}_i^2 \log(2n)}{n^2}\right)}{n - \tilde{\sigma}_i^2}$$

Experiments

Noise	Dataset	Methods												
		Single	NN-Mjv	HE_A	HE_M	CL	DN	NN-EBCC	NN-IBCC	WeaSEL	SLF	CoNAL	ADMoE	Ours
Class	AgNews	0.660	0.634	0.723	0.724	0.626	0.757	0.703	0.746	0.833	0.791	0.769	0.762	0.855
	20News	0.746	0.684	0.755	0.756	0.749	0.729	0.796	0.779	0.824	0.768	0.778	0.765	0.849
	IMDb	0.666	0.602	0.667	0.670	0.614	0.689	0.673	0.699	0.709	0.700	0.702	0.707	0.766
	Yelp	0.725	0.713	0.783	0.785	0.779	0.779	0.782	0.786	0.805	0.807	0.769	0.799	0.867
	Amazon	0.586	0.567	0.681	0.687	0.631	0.661	0.635	0.657	0.718	0.679	0.672	0.652	0.775
	Diabetes	0.648	0.610	0.576	0.592	0.633	0.686	0.657	0.663	0.680	0.577	0.696	0.646	0.728
	Backdoor	0.530	0.535	0.681	0.687	0.651	0.765	0.668	0.771	0.640	0.816	0.716	0.814	0.937
	Campaign	0.561	0.558	0.628	0.636	0.574	0.663	0.619	0.632	0.629	0.694	0.697	0.680	0.783
	Waveform	0.772	0.744	0.660	0.663	0.792	0.770	0.788	0.802	0.840	0.807	0.818	0.823	0.840
	Celeba	0.738	0.710	0.723	0.725	0.784	0.849	0.758	0.768	0.782	0.851	0.859	0.824	0.891
	SVHN	0.637	0.639	0.671	0.671	0.692	0.701	0.676	0.679	0.671	0.730	0.726	0.718	0.761
	F-MNIST	0.607	0.590	0.684	0.691	0.682	0.667	0.664	0.631	0.678	0.723	0.705	0.737	0.776
	CIFAR-10	0.541	0.573	0.574	0.576	0.596	0.570	0.590	0.590	0.587	0.587	0.634	0.625	0.655

Table 1: Main results with AUC as the evaluation metric. The best results are in bold.

Table 2: Real-world results with AUC as the evaluation metric. The best results are in bold.

Dataset	Methods												
	Single	NN-Mjv	HE_A	HE_M	CL	DN	NN-EBCC	NN-IBCC	WeaSEL	SLF	CoNAL	ADMoE	Ours
Sentiment CIFAR-10N	0.712 0.791	0.727 0.853	0.744 0.788	0.730 0.786			0.728 0.850	0.736 0.849	0.730 0.851	0.686 0.821	0.741 0.816	0.722 0.761	0.753 0.866

Experiments

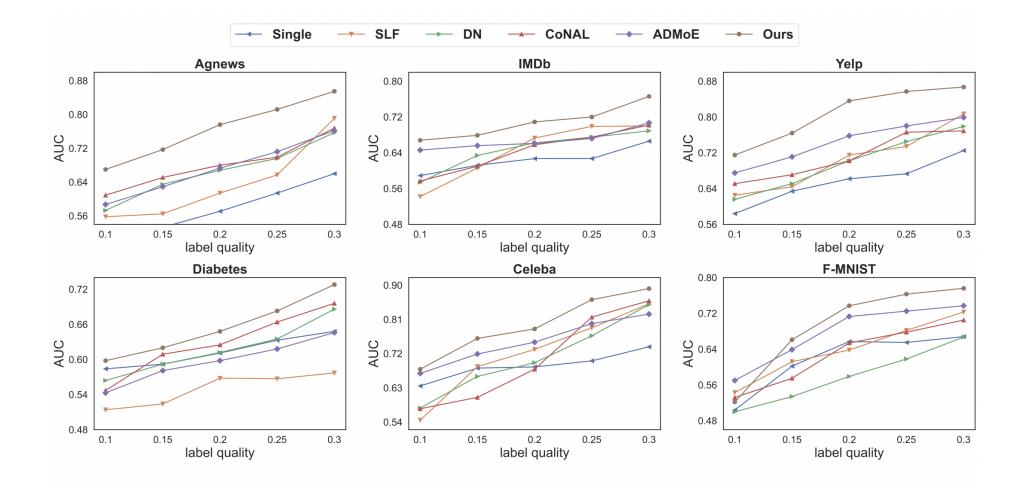


Figure 1: AUC comparison under different label quality k.

Thanks for watching!