SSA-Seg: Semantic and Spatial Adaptive Pixel-level Classifier for Semantic Segmentation

Xiaowen Ma*, Zhenliang Ni*, Xinghao Chen†

Huawei Noah's Ark Lab

Motivation

- Vanilla pixel-level classifiers for semantic segmentation are based on a certain paradigm, involving the inner product of fixed prototypes obtained from the training set and pixel features in the test image
- Limitation: feature deviation in the semantic domain and information loss in the spatial domain
- SSA-Seg: employ the coarse masks obtained from the fixed prototypes as a guide to adjust the fixed prototype towards the center of the semantic and spatial domains in the test image

Vanilla pixel-level classifier

Semantic and Spatial Adaptive Classifier

SSA-Seg consists of three parts: semantic prototype adaptation (SEPA), spatial prototype adaptation (SPPA), and online multidomain distillation

- SEPA offsets fixed semantic prototypes based on coarse mask-guided semantic feature distributions
- It can adapt to the semantic feature distributions of different images, alleviating the feature deviation in the semantic domain

$$\mathcal{S}_c = \operatorname{Softmax}_K(\mathcal{M}_c) \otimes \mathcal{S}_j$$
$$\mathcal{S}_p = \phi_s(\mathcal{S}_c \odot \mathcal{S})$$

- SPPA aims to make classification decisions with additional consideration of the spatial relation between pixel features and prototypes.
- Modeling the spatial relations of pixel and prototype can introduce structured information about the target objects, thus improving the segmentation performance for boundary regions and small targets

$$\mathcal{P}_{c} = \operatorname{Softmax}_{HW}(\mathcal{M}_{c}) \otimes \mathcal{P}_{f}$$
$$\mathcal{P}_{p} = \phi_{p}(\mathcal{P}_{c} \odot \mathcal{P})$$

- Online multi-domain distillation learning is proposed to optimize the process of feature generation and constrain the adaptation of the semantic and spatial prototype
- It consists of three parts: Response Domain Distillation, Semantic Domain Distillation, Spatial Domain Distillation

NEURAL INFORMATION PROCESSING SYSTEMS

Response Domain Distillation

 \mathcal{L}_{rd}

$$\mathcal{L}_{rd}^{i} = -\sum_{j=1}^{K} \psi(\hat{\mathcal{O}})^{i,j} \cdot \log(\psi(\mathcal{O}^{i,j})), \quad \mathcal{L}_{rd} = \frac{-1}{HW} \sum_{i=1}^{HW} \mathcal{L}_{rd}^{i}$$
$$= \frac{-1}{2K} \sum_{k=1}^{K} \left(\frac{\sum_{i=1}^{HW} \mathcal{L}_{rd}^{i} \mathcal{B}_{k}^{i} \mathcal{H}^{i}}{\sum_{i=1}^{HW} \mathcal{B}_{k}^{i} \mathcal{H}^{i}} + \frac{\sum_{i=1}^{HW} \mathcal{L}_{rd}^{i} \cdot \bar{\mathcal{B}}_{k}^{i} \mathcal{H}^{i}}{\sum_{i=1}^{HW} \bar{\mathcal{B}}_{k}^{i} \mathcal{H}^{i}} \right), \quad \mathcal{H}^{i} = -\sum_{j=1}^{K} \psi(\hat{\mathcal{O}})^{i,j} \cdot \log(\psi(\hat{\mathcal{O}}^{i,j}))$$

provide more information to the Primary Classifier

NEURAL INFORMATION PROCESSING SYSTEMS

Semantic Domain Distillation

$$\mathcal{M} = \psi(\mathcal{S}_p \mathcal{S}_p^T), \quad \hat{\mathcal{M}} = \psi(\hat{\mathcal{S}}_p \hat{\mathcal{S}}_p^T)$$
$$\mathcal{M}_d = \Lambda(\mathcal{M} - \hat{\mathcal{M}})$$
$$\mathcal{L}_{sd} = \frac{1}{K} \sum_{i=1}^K \sum_{j=1}^K \mathcal{M}_d^{i,j}$$

guide the offset process of semantic prototypes to exhibit better inter-class separation

Spatial Domain Distillation

$$\mathcal{L}_{pd} = \frac{-1}{K} \sum_{i=1}^{K} \sum_{j=1}^{D} \psi(\mathcal{P}_p)^{i,j} \cdot \log(\psi(\hat{\mathcal{P}}_p^{i,j}))$$

constrain the spatial prototypes guided by the rough mask to be equal to the spatial prototypes guided by the groundtruth mask

Experiment

Method	Backbone	Latency	Params	ADE20K		COCO-Stuff-10K		PASCAL-Context	
				FLOPs	mIoU	FLOPs	mIoU	FLOPs	mIoU
OCRNet [54]	HRNet-W48	67.2	8.6	164.8	43.30	164.8	36.16	143.2	48.22
+SSA-Seg		69.3	8.7	165.0	47.47 ^ 4.17	165.0	37.94 1.78	143.3	50.21 1.99
UperNet [48]	Swin-T	52.8	60.0	236.1	44.14	236.1	38.93	207.5	51.93
+SSA-Seg		54.3	61.1	236.3	47.56 ^{↑3.42}	236.3	42.30 ^{3.37}	207.7	54.91 ^ 2.98
SegFormer [49]	MiT-B5	69.0	82.0	52.5	49.13	52.5	44.07	45.8	58.39
+SSA-Seg		70.1	82.3	52.6	50.74 ^{1.61}	52.6	45.55	45.8	59.14 ^ 0.75
UperNet [48]	Swin-L	105.5	233.8	404.9	51.68	404.9	46.85	362.9	60.50
+SSA-Seg		107.3	234.9	405.2	52.69	405.2	48.94 ¹ 2.09	363.2	61.83 1.33
ViT-Adapter [8]	ViT-Adapter-L	283.3	363.8	616.1	54.40	616.1	50.16	541.5	65.77
+SSA-Seg		284.9	364.9	616.3	55.39 ^0.99	616.3	51.18 ^{1.02}	541.7	66.05 \cap 0.28
AFFormer-B [14]	AFFormer-B	25.1	3.0	4.3	39.94	4.3	33.22	3.7	48.57
+SSA-Seg		26.0	3.3	4.4	41.92 1.98	4.4	36.40 \u03c6 3.18	3.7	49.72 \phi1.15
SeaFormer-B [45]	SeaFormer-B	26.8	8.6	1.8	40.05	1.8	33.29	1.6	45.75
+SSA-Seg		27.3	8.8	1.8	42.46 ^{+2.41}	1.8	35.92 ^{2.63}	1.6	47.00 1.25
SegNeXt-T [17]	MSCAN-T	22.8	4.3	6.2	41.04	6.2	36.39	5.4	50.35
+SSA-Seg		23.3	4.6	6.3	43.90 ^ 2.86	6.3	$\textbf{38.91}_{\textbf{12.52}}$	5.4	52.58 ^{2.23}
SeaFormer-L [45]	SeaFormer-L	29.4	14.0	6.4	42.36	6.4	35.99	5.6	49.14
+SSA-Seg		29.9	14.2	6.4	45.36 13.00	6.4	38.48 ^{2.44}	5.6	49.66 10.52

- SSA-Seg significantly improves the segmentation performance of the baseline models with only a minimal increase in computational cost
- By applying SSA-Seg, we achieve the state-of-the-art lightweight segmentation performance

Experiment

• SSA-Seg outperforms previous classifiers

Method	Backbone	FLOPs	ADE20K	COCO.
FCN [34]		275.7	39.9	32.5
+ProtoSeg [62]	P acNat101 [10]	278.5	41.1 11.2	34.0
+DNC [46]	Keshetiui [19]	278.5	41.1 11.2	33.0
SSA-Seg		275.9	44.3 \tag{4.4}	36.6 ^{+4.1}
UperNet		297.2	48.0	42.8
+GMMSeg [28]	Swin B [32]	302.3	49.0	44.3
+DNC [46]	5wiii-D [52]	308.6	48.6	43.1 ↑0.3
+SSA-Seg		297.5	49.2 ^{1.2}	45.2 ↑2.4
OCRNet [54]		164.8	43.3	36.2
+GMMSeg [28]	HRNetV2_W48 [43]	169.8	44.8 11.5	-
+CAC [44]		164.9	45.7 12.4	-
+SSA-Seg		165.0	47.5 ↑4.2	37.9 ↑1.7
SegNeXt-T [17]		6.2	41.0	36.4
+CAC [44]	MSCAN-T [17]	6.2	43.0	37.5
+SSA-Seg		6.3	43.9 ↑2.9	38.9 12.5
SeaFormer-B [45]		1.8	40.0	33.3
+CAC [44]	SeaFormer-B [45]	1.8	40.1	35.5
+SSA-Seg		1.8	42.5 ↑2.5	35.9 ↑2.6

• By combining SSA-Seg, the existing pixellevel segmentation baselines achieve a better balance between efficiency and performance compared to mask classification methods

Method	Params	FLOPs	Latency	mIoU
MaskFormer [10]	41.3	55.1	31.0	44.5
Mask2Former [9]	44.0	70.1	55.2	47.2
YOSO [20]	42.0	37.3	28.3	44.7
PEM [4]	35.6	46.9	26.8	45.5
CGRSeg-B [40]	19.1	7.7	36.0	45.5
+SSA-Seg	19.3	7.6	36.0	47.1
CGRSeg-L [40]	35.7	14.9	43.3	48.3
+SSA-Seg	35.8	14.8	42.6	49.0

Experiment

- SSA-Seg has high accuracy for confusing classes
- SSA-Seg can present stronger activation values in the center region of the mask and does not show too much activation in irrelevant regions

