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• Causal Discovery
o Given observational data, we can only learn 𝜖(𝐷)

o Require further assumptions or interventional data 
to learn 𝐷

• Challenges

o Experimental design methods usually assume 

access to infinite intervention data

o Bayesian causal discovery methods have 

parametric assumptions on the SCM and noise

o The only  non-parametric Bayesian approach 

assume that the causal graph is a tree
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Problem Formulation

• Assumptions:

o Causal faithfulness

o Positive distributions

o Hard interventions

o Causal sufficiency

o Access to observational distribution

• Task:

o Given the UCCG 𝐺 and 𝑁 interventional samples, return a DAG 𝐷
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• Non-asymptotic results:



• Baselines:
o Random

o DCT
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Conclusion

• We develop the sample-efficient Bayesian learning causal discovery algorithm 

without parametric assumptions on the SCM

• We show in theory that our  proposed algorithm will learn the true causal graph with a 

high probability given enough interventional samples and the convergence rate

• We demonstrate the performance of our algorithm with simulated experiments and 

show how to modify the algorithm to answer general causal queries with case study
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