

EEG2Video: Towards Decoding Dynamic Visual Perception from EEG signals

**Xuan-Hao Yan-Kai Yansen
Liu¹* Liu¹* Wang^{2#}**

Yan-Kai

 $\text{Liu}^{\text{1*}}$

Liu^{1*} Wang^{2#} Kali Keli **Yansen # Kan Ren³**

Shi¹ Wang²

Hanwen Dongsheng Zilong Bao-Liang Li²

Wei-Long $\mathsf{L} \mathsf{u}^{\mathsf{1}}$ \qquad $\$ **#**

- **¹ Shanghai Jiao Tong University ² Microsoft Research Asia**
	- **³ ShanghaiTech University**

https://bcmi.sjtu.edu.cn/home/eeg2video

Brain Decoding

Previous works on Brain Decoding (a) Fig. 14 King to the UNFORMATION

- EEG: electroencephalography
- SD: stable diffsuion model
- GAN: generative adversarial network Chen et.al. 2023, MinD-Video

[1] Horikawa T, Kamitani Y. Generic decoding of seen and imagined objects using hierarchical visual features[J]. Nature communications, 2017, 8(1): 15037. [2] Beliy R, Gaziv G, Hoogi A, et al. From voxels to pixels and back: Self-supervision in natural-image reconstruction from fmri[J]. Advances in Neural Information Processing Systems, 2019, 32. [3] Scotti P, Banerjee A, Goode J, et al. Reconstructing the mind's eye: fMRI-to-image with contrastive learning and diffusion priors[J]. Advances in Neural Information Processing Systems, 2024, 36. [4] Benchetrit Y, Banville H, King J R. Brain decoding: toward real-time reconstruction of visual perception[C]//The Twelfth International Conference on Learning Representations. [5] Li D, Wei C, Li S, et al. Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion[J]. arXiv preprint arXiv:2403.07721, 2024. [6] Wen H, Shi J, Zhang Y, et al. Neural encoding and decoding with deep learning for dynamic natural vision[J]. Cerebral cortex, 2018, 28(12): 4136-4160. [7] Wang C, Yan H, Huang W, et al. Reconstructing rapid natural vision with fMRI-conditional video generative adversarial network[J]. Cerebral Cortex, 2022, 32(20): 4502-4511. [8] Chen Z, Qing J, Zhou J H. Cinematic mindscapes: High-quality video reconstruction from brain activity[J]. Advances in Neural Information Processing Systems, 2023, 36.

Video Reconstruction from Brain Signals G , H ,

- TR: temporal resolution
- BOLD: blood oxygen level-dependent

Challenges of video reconstruction from EEG

- No suitable EEG dataset. How to build a such dataset?
- The EEG's decoding capability remains unclear. How to determine the decoding capability?
- EEG has low spatial resolution and signal-to-noise ratio. How to reconstruct videos from EEG?

To build the **S**JTU **EE**G **D**ataset for **D**ynamic **V**ision (SEED- DV), we eleborately select stimuli from 40 concepts across 9 coarser classes following the blow pinciples: *Land Animal, Water Animal, Plant, Exercise, Human, Nutural Scene, Food, Musical Instrument, Transportation.*

- We choose natural videos rather than artificial ones (like $\int_{\frac{c_1}{R}$ anime).
- We try to cover as diverse natural classes as posible.
- We would like to balance the numbers of the main colors.

Expeirment Protocol

rest phase

We recorded 20 subjects' EEG data while they were veiwing video stimuli. For each of 40 concept, 35 two second video clips are collected from Internet.

- Subjects watched 7 video blocks in total. There is a rest phase between each two blocks.
- Each block includes 40 concepts, the order of these concepts is random across blocks.
- Subjects were first informed of the next concept, then watched 5 video clips of the informed concept. **Example 2** 8 min 40 s

video block

EEG-VP Benchmark

To investigate the EEG's decoding capability. We manually annotated some meta information to conduct the EEG-visual perception (EEG-VP) benchmark.

- Human: the appearance of humans: {*Yes, No* }.
- Face: the appearance of human faces: {*Yes, No* }.
- Number: the number of the main objects: {One, Two, *Many* }.
- Color: the color of the main objects: {*Blue, Green, Red, Grey, White, Yellow, Colorful* }.
- Opitical Flow Score: the optical flow score of the video.

We evaluate a bunch of EEG models on the EEG-VP benchmark and conclude some findings:

- We **can** decode **Categories** information from EEG signals.
- We **can** decode **Color** information from EEG signals.
- We **can** decode **Dynamic** information from EEG signals.
- We **cannot** decode *numbers, appearance of humans or faces* from EEG signals.

Table 1: Average classification accuracy $(\%)$ and std across all subjects with different EEG classifiers on different tasks. Chance level is the percentage of the largest class. The star symbol (*) represents the result is above chance level with statistical significance (two-sample t-test: $p < 0.05$).

EEG2Video Framework

-
-
-
-

Reconstruction Samples

Reconstruction Quantitative Results

- Several metrics across *semantic-level* and *pixel-level* are used to validate the effectiveness of our EEG2Video framework.
- We conduct the ablation study by removing the Seq2Seq module and the DANA process respectively, and we can see huge performance drop without either module.
- When dealing with smaller subset with less categories, the performance increases.

Table 2: Quantitative results of each methods on different size of subsets. Standard deviation is calculated across random seeds.

NeuroScience Findings

To find electrodes or brain areas most associated with $A \rightarrow \mathbb{R}$ dynamic visual perception, we conduct a one-channel classification task to test the classification quality of each electrode.

- Figure $4(A)$ shows that the electrodes in the occipital \blacksquare area have higher accuracy on Human/Animal tasks.
- Figure 4(B) reveals that the brain area associated to \Box movements are around the temporal region where the Frequent Slow \blacksquare _{0.50} sensory and motor cortex lies.
- Removing occipital region significantly damages the $\frac{1}{2}$ phies of each electrode's accuracy for Hu-
man/Animal and Fast/Slow tasks. (C). Ablate performance ($p < 0.01$).

Figure 4: Spatial Analysis. (A-B). Topograelectrodes of different brain regions.

We plot the confusion matrices of GLMNet on the 40 class task.

-
- It can be seen that there is a faint diagonal lines.
• Moreover, a small square in the right bottom corner $\frac{a}{2}$ is being observed, of which categories are {Drum, • Moreover, a small square in the right bottom corner $\frac{1}{\omega_{20}}$ is being observed, of which categories are {Drum, Guitar, and Piano} (32 - 34 class). The musical instruments stimulate the auditory cortex in our $\frac{30}{100}$ brains with these visual cues.

Thanks

Contact us:

haogram_sjtu@sjtu.edu.cn yansenwang@microsoft.com renkan@shanghaitech.edu.cn weilong@sjtu.edu.cn

BC

https://bcmi.sjtu.edu.cn/home/eeg2video