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2019
Beliy used fMRI
with self-supervision

2023
Scotti used fMRI
with retrieval + SD

2023
Benchetrit used MEG 
with SD

2024
Li used EEG/MEG
with retrieval + SD

• fMRI: functional magnetic resonance imaging
• MEG: magnetoencephalogram
• EEG: electroencephalography
• SD: stable diffsuion model
• GAN: generative adversarial network Chen et.al. 2023, MinD-Video
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Video Reconstruction from Brain Signals
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• TR: temporal resolution
• BOLD: blood oxygen level-dependent



Challenges
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• No suitable EEG dataset. How to build a such dataset?

• The EEG's decoding capability remains unclear. How to 
determine the decoding capability?

• EEG has low spatial resolution and signal-to-noise ratio. How 
to reconstruct videos from EEG?

Challenges of video reconstruction from EEG



Video Stimuli Selection
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To build the SJTU EEG Dataset for Dynamic Vision (SEED-
DV), we eleborately select stimuli from 40 concepts across 9 
coarser classes following the blow pinciples: Land Animal, 
Water Animal, Plant, Exercise, Human, Nutural Scene, Food, 
Musical Instrument, Transportation.

• We choose natural videos rather than artificial ones (like 
anime).

• We try to cover as diverse natural classes as posible.

• We would like to balance the numbers of the main colors.



Expeirment Protocol
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We recorded 20 subjects' EEG data while they were 
veiwing video stimuli. For each of 40 concept, 35 two-
second video clips are collected from Internet.

• Subjects watched 7 video blocks in total. There is a 
rest phase between each two blocks.

• Each block includes 40 concepts, the order of these 
concepts is random across blocks.

• Subjects were first informed of the next concept, then 
watched 5 video clips of the informed concept.



EEG-VP Benchmark
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To investigate the EEG's decoding capability. We 
manually annotated some meta information to conduct 
the EEG-visual perception (EEG-VP) benchmark.

• Human: the appearance of humans: {Yes, No }.

• Face: the appearance of human faces: {Yes, No }.

• Number: the number of the main objects: {One, Two, 
Many }.

• Color: the color of the main objects: {Blue, Green, Red, 
Grey, White, Yellow, Colorful }.

• Opitical Flow Score: the optical flow score of the video.



EEG-VP Results
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We evaluate a bunch of EEG models on the EEG-VP benchmark and conclude some findings:
• We can decode Categories information from EEG signals.
• We can decode Color information from EEG signals.
• We can decode Dynamic information from EEG signals.
• We cannot decode numbers, appearance of humans or faces from EEG signals.



EEG2Video Framework
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In this paper, we propose EEG2Video, a pipeline for 
reconstructing videos from EEG signals. We design 
several modules based on the results on the EEG-VP 
benchmark to better decode videos.

• We use a Seq2Seq model for densly aligning EEG 
embeddings with low-level visual information.

• We use a Semantic predictor for aligning EEG 
embeddings with semantic information in the CLIP 
space.

• We design the dynamic-aware noise-adding (DANA) 
modules to introduce the fast/slow information into 
the diffusion process.

• We leverage the inflated diffusion models for 
decoding vivid videos.



Reconstruction Samples
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Reconstruction  Quantitative Results
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• Several metrics across semantic-level and pixel-level are used to validate the effectiveness of our 
EEG2Video framework.

• We conduct the ablation study by removing the Seq2Seq module and the DANA process respectively, 
and we can see huge performance drop without either module.

• When dealing with smaller subset with less categories, the performance increases.



NeuroScience Findings
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To find electrodes or brain areas most associated with
dynamic visual perception, we conduct a one-channel
classification task to test the classification quality of
each electrode.

• Figure 4(A) shows that the electrodes in the occipital 
area have higher accuracy on Human/Animal tasks.

• Figure 4(B) reveals that the brain area associated to 
movements are around the temporal region where the 
sensory and motor cortex lies.

• Removing occipital region significantly damages the 
performance (p < 0.01).



NeuroScience Findings
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We plot the confusion matrices of GLMNet on the 40-
class task. 

• It can be seen that there is a faint diagonal lines.

• Moreover, a small square in the right bottom corner 
is being observed, of which categories are {Drum, 
Guitar, and Piano} (32 - 34 class). The musical 
instruments stimulate the auditory cortex in our 
brains with these visual cues.
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