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Global convolution sequence models:

✔ Effective general-purpose sequence models

• FlexConv, S4, S4D, SGConv, Hyena

✔ Efficient computation via FFTs

• FlashFFTConv

✗ Difficult to train

• Explicitly parameterized kernels are prone to overfitting

• Implicit kernel parameterization, regularization, composition of sub kernels

✗ Hand-crafted inductive biases

• Fixed kernel decay
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MRConv: Multi-Resolution Convolutions

+

1. Multi-Resolution Convolutions

• Introduces learnable kernel decay

2. Causal Structural Reparameterization

• Improves training by introducing training-time non-linearity

3. Low-Rank Kernel Parameterizations

• Explicitly parameterized kernels are prone to overfitting
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Multi-Resolution Convolutions

We define multi-resolution convolutions as the weighted sum of normalized
convolutions of different length

y = α0BN0(k0 ∗ u) + α1BN1(k1 ∗ u) + · · ·+ αN−1BNN−1(kN−1 ∗ u) (1)

■ At each resolution the kernel ki is of length 2il0

■ Weighted sum of multi-resolution implicitly learns kernel decay

■ BatchNorm required for learning weighted sum due to impact of kernel size on
output statistics
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Causal Structural Reparameterization

We can merge multiple causal convolutions into one as,

y =

N−1∑
n=0

(u ∗ kn)︸ ︷︷ ︸
Sum of convolutions

=

(
u ∗

(
N−1∑
n=0

kn

))
︸ ︷︷ ︸

Convolution of sum

= (u ∗ krep), (2)

But what about BatchNorm?

✗ Non-linear during training → Cannot Merge

y = α0BN0(k0 ∗ u)︸ ︷︷ ︸
Sum of convolutions

+α1BN1(k1 ∗ u)︸ ︷︷ ︸
Sum of convolutions

+ · · ·+ αN−1BNN−1(kN−1 ∗ u)︸ ︷︷ ︸
Sum of convolutions

(3)

✔ Linear during inference → Merge

y = u ∗ (α0BN0(k0) + α1BN1(k1) + · · ·+ αN−1BNN−1(kN−1))︸ ︷︷ ︸
Convolution of sum

(4)
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Low-Rank Kernel Parameterizations

1. Dilated Kernels y[t] = (u ∗ kdilated)[t] =
∑l−1

τ=0 k[τ ]u[t − pτ ]

2. Fourier Kernels kfourier[t] = IFFT[ZeroPad(k̂, L − m)])[t]

3. Sparse Kernels ksparse[t] = δt∈T · kt

6 / 9



Experiments: Long Range Arena

MRConv is competitive with other sub-quadratic complexity models, including SSMs
and linear-time transformers.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
(Input length) (2,048) (4,096) (4,000) (1,024) (1,024) (16,384)

Transformer 36.37 64.27 57.46 42.44 71.40 53.66

Linear-Time Transformers:
MEGA-Chunk 58.76 90.19 90.97 85.80 94.41 93.81 85.66

State Space Models:
S4D-LegS 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S4-LegS 59.60 86.82 90.90 88.65 94.20 96.35 86.09
Liquid-S4 62.75 89.02 91.20 89.50 94.8 96.66 87.32
S5 62.15 89.31 91.40 88.00 95.33 98.58 87.46

Convolutional Models:
CCNN 43.60 84.08 - 88.90 91.51 -
Long Conv 62.2 89.6 91.3 87.0 93.2 96.0 86.6
SGConv 61.45 89.20 91.11 87.97 95.46 97.83 87.17

MRConv 62.40 89.26 91.44 90.37 95.55 97.82 87.81
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Experiments: ImageNet Classification
Using optimized CUDA kernels for 1D FFT convolutions, we close the gap between
theoretical and empirical throughput.
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Summary

Thank you for listening!

+

More in our paper:

■ More experiments

■ More ablations

■ More implementation details
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