Reparameterized Multi-Resolution Convolutions for Long Sequence Modelling

Harry Jake Cunningham¹, Giorgio Giannone^{1,2},

Mingtian Zhang¹, Marc Deisenroth¹

University College London¹, Amazon²

NeurIPS 2024

Global convolution sequence models:

✓ Effective general-purpose sequence models

- FlexConv, S4, S4D, SGConv, Hyena
- Efficient computation via FFTs
 - FlashFFTConv

X Difficult to train

- Explicitly parameterized kernels are prone to overfitting
- Implicit kernel parameterization, regularization, composition of sub kernels
- X Hand-crafted inductive biases
 - Fixed kernel decay

MRConv: Multi-Resolution Convolutions

- 1. Multi-Resolution Convolutions
 - Introduces learnable kernel decay
- 2. Causal Structural Reparameterization
 - Improves training by introducing training-time non-linearity
- 3. Low-Rank Kernel Parameterizations
 - Explicitly parameterized kernels are prone to overfitting

We define **multi-resolution convolutions** as the weighted sum of normalized convolutions of different length

 $y = \alpha_0 BN_0(k_0 * u) + \alpha_1 BN_1(k_1 * u) + \dots + \alpha_{N-1} BN_{N-1}(k_{N-1} * u)$ (1)

- At each resolution the kernel k_i is of length $2^i l_0$
- Weighted sum of multi-resolution implicitly learns kernel decay
- BatchNorm required for learning weighted sum due to impact of kernel size on output statistics

Causal Structural Reparameterization

We can merge multiple causal convolutions into one as,

$$y = \sum_{\substack{n=0\\\text{Sum of convolutions}}}^{N-1} (u * k_n) = \left(u * \left(\sum_{n=0}^{N-1} k_n \right) \right)_{\text{Convolution of sum}} = (u * k_{rep}), \quad (2)$$

But what about BatchNorm?

 \checkmark Non-linear during training \rightarrow Cannot Merge

$$y = \underbrace{\alpha_0 BN_0(k_0 * u)}_{\text{Sum of convolutions}} + \underbrace{\alpha_1 BN_1(k_1 * u)}_{\text{Sum of convolutions}} + \cdots + \underbrace{\alpha_{N-1} BN_{N-1}(k_{N-1} * u)}_{\text{Sum of convolutions}}$$
(3)

✓ Linear during inference \rightarrow Merge

$$y = u * \underbrace{\left(\alpha_0 BN_0(k_0) + \alpha_1 BN_1(k_1) + \dots + \alpha_{N-1} BN_{N-1}(k_{N-1})\right)}_{\text{Convolution of sum}}$$
(4)

Low-Rank Kernel Parameterizations

- 1. Dilated Kernels $y[t] = (u * k_{dilated})[t] = \sum_{\tau=0}^{l-1} k[\tau]u[t p\tau]$
- 2. Fourier Kernels $k_{fourier}[t] = IFFT[ZeroPad(\hat{k}, L m)])[t]$

3. Sparse Kernels $k_{sparse}[t] = \delta_{t \in \mathcal{T}} \cdot k_t$

MRConv is competitive with other sub-quadratic complexity models, including SSMs and linear-time transformers.

Model (Input length)	ListOps (2,048)	Text (4,096)	Retrieval (4,000)	Image (1,024)	Pathfinder (1,024)	Path-X (16,384)	Avg.
Transformer	36.37	64.27	57.46	42.44	71.40		53.66
Linear-Time Transformers: MEGA-Chunk	58.76	90.19	90.97	85.80	94.41	93.81	85.66
State Space Models: S4D-LegS S4-LegS Liquid-S4 S5	60.47 59.60 62.75 62.15	86.18 86.82 89.02 89.31	89.46 90.90 91.20 <u>91.40</u>	88.19 88.65 <u>89.50</u> 88.00	93.06 94.20 94.8 95.33	91.95 96.35 96.66 98.58	84.89 86.09 87.32 87.46
Convolutional Models: CCNN Long Conv SGConv	43.60 62.2 61.45	84.08 <u>89.6</u> 89.20	91.3 91.11	88.90 87.0 87.97	91.51 93.2 <u>95.46</u>	96.0 <u>97.83</u>	- 86.6 87.17
MRConv	<u>62.40</u>	89.26	91.44	90.37	95.55	97.82	87.81

Experiments: ImageNet Classification

Using optimized CUDA kernels for 1D FFT convolutions, we close the gap between theoretical and empirical throughput.

Summary

Thank you for listening!

More in our paper:

- More experiments
- More ablations
- More implementation details