Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning

Sergey Samsonov, Eric Moulines, Qi-Man Shao, Zhuo-Song Zhang, Alexey Naumov

HSE University

November 13, 2024

Linear Stochastic Approximation

▶ Given $\bar{\mathbf{A}} \in \mathbb{R}^{d \times d}$ and $\bar{\mathbf{b}} \in \mathbb{R}^d$, we aim at finding $\theta^* \in \mathbb{R}^d$, which is a solution of

$$\mathbf{\bar{A}}\theta^{\star}=\mathbf{\bar{b}}$$
 .

Our analysis is based on noisy observations $\{(\mathbf{A}(Z_n), \mathbf{b}(Z_n))\}_{n \in \mathbb{N}}$. Here $\mathbf{A}: \mathbb{Z} \to \mathbb{R}^{d \times d}$, $\mathbf{b}: \mathbb{Z} \to \mathbb{R}^d$ are measurable mappings.

LSA algorithm, Robbins and Monro [1951]

For a sequence of step sizes $\{\alpha_k\}$, and initialization θ_0 , consider the sequences of estimates $\{\theta_n\}_{n\in\mathbb{N}}, \{\bar{\theta}_n\}_{n\geq 2}$ given by

$$\theta_k = \theta_{k-1} - \alpha_k \{ \mathbf{A}(Z_k) \theta_{k-1} - \mathbf{b}(Z_k) \}, \quad k \ge 1,$$

$$\bar{\theta}_n = n^{-1} \sum_{k=1}^{2n-1} \theta_k, \quad n \ge 2.$$

I.I.D. Noise

Sequence $\{Z_k\}_{k\in\mathbb{N}}$ is an i.i.d. sequence taking values in a state space (Z, \mathcal{Z}) with distribution π satisfying $\mathbb{E}[\mathbf{A}(Z_1)] = \bar{\mathbf{A}}$ and $\mathbb{E}[\mathbf{b}(Z_1)] = \bar{\mathbf{b}}$;

We write \mathbf{A}_k instead of $\mathbf{A}(Z_k)$, and \mathbf{b}_k instead of $\mathbf{b}(Z_k)$, respectively.

Normal approximation

CLT

Under appropriate conditions on the step sizes $\{\alpha_k\}_{k\in\mathbb{N}}$ and noisy observations $\{\mathbf{A}(Z_k)\}_{k\in\mathbb{N}}$, it is known that

$$\sqrt{n}(\bar{\theta}_n - \theta^\star) \overset{d}{\to} \mathcal{N}(0, \Sigma_\infty)\,,$$

where Σ_{∞} is the asymptotic covariance matrix, see e.g. Fort [2015].

Berry-Esseen bounds

Our aim is to obtain the non-asymptotic type bounds for

$$\rho_n^{\mathsf{Conv}} := \sup_{B \in \mathsf{Conv}(\mathbb{R}^d)} \left| \mathbb{P} \big(\sqrt{n} (\bar{\theta}_n - \theta^\star) \in B \big) - \mathbb{P} \big(\Sigma_{\infty}^{1/2} \eta \in B \big) \right| \,,$$

where $\eta \sim \mathcal{N}(0, I_d)$, and $Conv(\mathbb{R}^d)$ is a set of convex sets in \mathbb{R}^d .

Linear Stochastic Approximation

▶ Let $\{Z_k\}_{k\in\mathbb{N}}$ be an i.i.d.sequence and consider the recurrence

$$\theta_k = \theta_{k-1} - \alpha_k \{ \mathbf{A}(Z_k) \theta_{k-1} - \mathbf{b}(Z_k) \}$$
 (1)

► Set

$$\tilde{\mathbf{A}}(z) = \mathbf{A}(z) - \bar{\mathbf{A}}, \quad \tilde{\mathbf{b}}(z) = \mathbf{b}(z) - \bar{\mathbf{b}},$$

and introduce

$$\varepsilon(z) = \mathbf{A}(z)\theta^* - \mathbf{b}(z), \quad \Sigma_{\varepsilon} = \mathbb{E}[\varepsilon(Z)\varepsilon(Z)^{\top}].$$

Assumptions

Assumption A1

- ▶ Sequence $\{Z_n\}_{n\in\mathbb{N}}$ is a sequence of i.i.d. random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with distribution π .
- ▶ It holds that

$$C_A = \sup_{z \in Z} \|\mathbf{A}(z)\| \vee \sup_{z \in Z} \|\tilde{\mathbf{A}}(z)\| < \infty$$

and $-\bar{\mathbf{A}}$ is Hurwitz. Moreover,

$$\int_{\mathbf{Z}} \mathbf{A}(z) d\pi(z) = \bar{\mathbf{A}}, \quad \int_{\mathbf{Z}} \mathbf{b}(z) d\pi(z) = \bar{\mathbf{b}}, \quad \|\varepsilon\|_{\infty} = \sup_{z \in \mathcal{I}} \|\varepsilon(z)\| < +\infty.$$

► For the noise covariance matrix

$$\Sigma_{\varepsilon} = \int_{\mathbf{Z}} \varepsilon(\mathbf{z}) \varepsilon(\mathbf{z})^{\top} d\pi(\mathbf{z})$$
 (2)

it holds that its smallest eigenvalue is bounded away from 0, that is,

$$\lambda_{\min} := \lambda_{\min}(\Sigma_{\varepsilon}) > 0. \tag{3}$$

Normal approximation for LSA-PR

Theorem (Rates of normal approximation for LSA)

Assume A1, let $\alpha_k = c_0/k^{\gamma}$, $\gamma \in [1/2; 1)$, and let n be large enough. Then the following bound holds:

$$\begin{split} \rho_n^{\mathsf{Conv}} &\lesssim \frac{d^{1/2} \|\varepsilon\|_\infty^3}{\lambda_{\min}^{3/2} \sqrt{n}} + \frac{C_4}{\lambda_{\min}} \exp\biggl\{ -\frac{c_0 \mathsf{a} n^{1-\gamma}}{2(1-\gamma)} \biggr\} \|\theta_0 - \theta^\star\| \\ &+ \frac{C_1}{\lambda_{\min} n^{(1-\gamma)/2}} + \frac{C_2}{\lambda_{\min} n^{1-\gamma}} + \frac{C_3}{\lambda_{\min} n^{\gamma/2}} \,, \end{split} \tag{4}$$

where C_1 , C_2 , C_3 , C_4 are problem-specific constants.

Setting here
$$\alpha_k = c_0/\sqrt{k}$$
, we obtain that
$$\rho_n^{\mathsf{Conv}} \lesssim n^{-1/4} + \Delta_1 \exp\{-c_0 a \sqrt{n}\} \|\theta_0 - \theta^\star\|.$$

Comparison

- Srikant [2024] considers TD learning with Markov noise and obtained $\rho_n^{\text{Conv}} \lesssim n^{-1/8}$;
- Anastasiou et al. [2019] consider smooth Wasserstein distance and obtained $d_K(\sqrt{n}(\bar{\theta}_n \theta^*), Y) \le n^{-1/6}$.

Multiplier bootstrap for LSA

- ▶ We aim to provide confidence intervals for $\sqrt{n}(\bar{\theta}_n \theta^*)$ without directly estimating the asymptotic covariance matrix Σ_{∞} , following Fang et al. [2018];
- Let $\mathcal{W}^{2n}=\{W_\ell\}_{1\leq \ell\leq 2n}$ i.i.d. random variables, independent of $\mathcal{Z}^{2n}=\{Z_\ell\}_{1\leq \ell\leq 2n}$, where $\mathbb{E}[W_1]=1$, $\mathrm{Var}[W_1]=1$;
- ▶ We write $\mathbb{P}^b = \mathbb{P}(\cdot|\mathcal{Z}^{2n})$ and $\mathbb{E}^b = \mathbb{E}(\cdot|\mathcal{Z}^{2n})$. Generate M independent samples $(w_n^\ell, \ldots, w_{2n}^\ell)$, $1 \le \ell \le M$ and consider M recursively updated perturbed LSA estimates

$$\begin{split} & \theta_k^{\mathrm{b},\ell} = \theta_{k-1}^{\mathrm{b},\ell} - \alpha_k w_k^\ell \{ \mathbf{A}(Z_k) \theta_{k-1}^{\mathrm{b},\ell} - \mathbf{b}(Z_k) \} \,, \quad k \geq n+1 \,, \quad \theta_n^{\mathrm{b},\ell} = \theta_n \,, \\ & \overline{\theta}_n^{\mathrm{b},\ell} = n^{-1} \sum_{k=n}^{2n-1} \theta_k^{\mathrm{b},\ell} \,, \quad n \geq 1 \,. \end{split}$$

We further use a short notation $\bar{\theta}_n^{\rm b}$ for $\bar{\theta}_n^{\rm b,1}$.

Multiplier Bootstrap validity

Theorem (Bootstrap validity for LSA)

Assume A1, let $\alpha_k = c_0/\sqrt{k}$, and let n be large enough. Then with \mathbb{P} – probability at least 1-6/n it holds that

$$\begin{split} \sup_{B \in \mathsf{Conv}(\mathbb{R}^d)} |\mathbb{P}^{\mathsf{b}}(\sqrt{n}(\bar{\theta}_n^{\mathsf{b}} - \bar{\theta}_n) \in B) - \mathbb{P}(\sqrt{n}(\bar{\theta}_n - \theta^\star) \in B)| \\ \lesssim \frac{C_5 \log n}{\lambda_{\min} n^{1/4}} + \frac{C_6 \sqrt{d} \log n}{\lambda_{\min} \sqrt{n}} + \frac{C_7 \mathrm{e}^{-(c_0/2)a\sqrt{n}}}{\lambda_{\min}} \|\theta_0 - \theta^\star\| \end{split}$$

where C_5 , C_6 , C_7 are problem-specific constants.

Thank you!

References I

- Andreas Anastasiou, Krishnakumar Balasubramanian, and Murat A. Erdogdu. Normal approximation for stochastic gradient descent via non-asymptotic rates of martingale CLT. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pages 115–137. PMLR, 25–28 Jun 2019. URL https://proceedings.mlr.press/v99/anastasiou19a.html.
- Yixin Fang, Jinfeng Xu, and Lei Yang. Online bootstrap confidence intervals for the stochastic gradient descent estimator. *Journal of Machine Learning Research*, 19(78):1–21, 2018. URL http://imlr.org/papers/v19/17-370.html.
- G. Fort. Central limit theorems for stochastic approximation with controlled Markov chain dynamics. ESAIM: PS, 19:60–80, 2015.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.
- R Srikant. Rates of convergence in the central limit theorem for markov chains, with an application to TD learning. arXiv preprint arXiv:2401.15719, 2024.