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Choosing the Right Batch Size

Difficulties:
▶ As models get larger, larger batch sizes produce better results
▶ Larger batch sizes may be required to converge faster
▶ Testing different batch sizes with a grid search at large scale is

not practical

GNS is a useful signal here.
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Gradient Noise Scale

Figure: From McCandlish et al. (2018), illustrating the intuition of GNS
and its usefulness in training.
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Computing Gradient Noise Scale

Gest(θ) ∼ N
(

G(θ), 1
BΣ(θ)

)
and Bsimple =

tr(Σ)
GTG . (1)

To compute this we need these estimators:

∥G∥2
2 :=

1
Bbig − Bsmall

(
Bbig

∥∥GBbig

∥∥2
2 − Bsmall∥GBsmall∥

2
2

)
≈ GTG

(2)

S :=
1

1/Bsmall − 1/Bbig

(
∥GBsmall∥

2
2 −

∥∥GBbig

∥∥2
2

)
≈ tr(Σ),

(3)

GBbig are normal minibatch gradients but GBsmall are microbatch
gradients.
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Reusing intermediate tensors
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Figure: We can reuse the intermediate 3D per-example tensor.
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GNS by Layer Type or Index
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Efficient LayerNorm Kernel
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Figure: Speed comparison versus our fused custom kernel computing
per-example gradient norms in tandem.
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Universal GNS

Track GNS anywhere:
▶ Enable backward operations that extract per-example gradient

norms while computing the parameter gradients

▶ Train at any scale on any number of devices
▶ MFU cost for exact tracking is 10-25% MFU in practice
▶ Tracking norm layer GNS costs 0% MFU
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Why You Should Look at GNS
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Figure: (Left) Linear batch size schedule tracking the GNS over 2.2
billion tokens processed. (Right) The number of tokens saved over the
fixed batch size run to achieve the same loss.
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Thanks

The code to replicate this work or use in future work may be found
at: https://github.com/CerebrasResearch/nanoGNS.
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