

Normalization Layer Per-Example Gradients are Sufficient to Predict Gradient Noise Scale in Transformers

Conference on Neural Information Processing Systems (NeurIPS)

Gavia Gray † , Aman Tiwari $^{\natural},$ Shane Bergsma $^{\dagger},$ Joel Hestness †

[†]Cerebras Systems, [§]Subjective.dev

NeurIPS 2024

Difficulties:

- ► As models get larger, larger batch sizes produce better results
- ► Larger batch sizes may be required to converge faster
- Testing different batch sizes with a grid search at large scale is not practical

Difficulties:

- ► As models get larger, larger batch sizes produce better results
- Larger batch sizes may be required to converge faster
- Testing different batch sizes with a grid search at large scale is not practical

GNS is a useful signal here.

Gradient Noise Scale

Figure: From McCandlish et al. (2018), illustrating the intuition of GNS and its usefulness in training.

Computing Gradient Noise Scale

$$G_{\mathsf{est}(\theta)} \sim \mathcal{N}\left(G(\theta), \frac{1}{B}\Sigma(\theta)\right) \quad \mathsf{and} \quad \mathcal{B}_{\mathrm{simple}} = \frac{tr(\Sigma)}{G^{\mathsf{T}}G}.$$
 (1)

To compute this we need these estimators:

$$\|\mathcal{G}\|_{2}^{2} := \frac{1}{B_{\text{big}} - B_{\text{small}}} \left(B_{\text{big}} \| \mathbf{G}_{B_{\text{big}}} \|_{2}^{2} - B_{\text{small}} \| \mathbf{G}_{B_{\text{small}}} \|_{2}^{2} \right) \approx \mathbf{G}^{T} \mathbf{G}$$
(2)
$$\mathcal{S} := \frac{1}{1/B_{\text{small}} - 1/B_{\text{big}}} \left(\| \mathbf{G}_{B_{\text{small}}} \|_{2}^{2} - \| \mathbf{G}_{B_{\text{big}}} \|_{2}^{2} \right) \approx tr(\Sigma),$$
(3)

 $G_{B_{\rm big}}$ are normal minibatch gradients but $G_{B_{\rm small}}$ are microbatch gradients.

NeurIPS 2024

Reusing intermediate tensors

Figure: We can reuse the intermediate 3D per-example tensor.

GNS by Layer Type or Index

Cerebras

Efficient LayerNorm Kernel

Figure: Speed comparison versus our fused custom kernel computing per-example gradient norms in tandem.

Enable backward operations that extract per-example gradient norms while computing the parameter gradients

- Enable backward operations that extract per-example gradient norms while computing the parameter gradients
- Train at any scale on any number of devices

- Enable backward operations that extract per-example gradient norms while computing the parameter gradients
- Train at any scale on any number of devices
- ▶ MFU cost for exact tracking is 10-25% MFU in practice

- Enable backward operations that extract per-example gradient norms while computing the parameter gradients
- Train at any scale on any number of devices
- ▶ MFU cost for exact tracking is 10-25% MFU in practice
- ► Tracking norm layer GNS costs 0% MFU

NS

Why You Should Look at GNS

Figure: (Left) Linear batch size schedule tracking the GNS over 2.2 billion tokens processed. (Right) The number of tokens saved over the fixed batch size run to achieve the same loss.

Thanks

The code to replicate this work or use in future work may be found at: https://github.com/CerebrasResearch/nanoGNS.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model of large-batch training, 2018. URL https://arxiv.org/abs/1812.06162.