

Cloud Object Detector Adaptation by Integrating Different Source Knowledge

Shuaifeng Li¹ Mao Ye^{1*} Lihua Zhou¹ Nianxin Li¹ Siying Xiao¹ Song Tang² Xiatian Zhu³

¹ University of Electronic Science and Technology of China ² University of Shanghai for Science and Technology ³ University of Surrey

PROBLEM

Cloud Object Detector Adaptation

Motivation

Unsatisfactory results due to domain shift

Poor detection speed due to numerous parameters and network latency

Cloud Object Detector Adaptation

Definition

Cloud Object Detector Adaptation

Difference

Conditions	UDAOD	SFOD	Black-box DAOD	CODA
Source data access	~	×	×	×
Source model access	\checkmark	\checkmark	×	×
Cloud API access	×	×	\checkmark	\checkmark
High domain similarity	\checkmark	\checkmark	\checkmark	×
Ability				
Flexible architecture	×	×	\checkmark	~
Open categories	×	×	×	\checkmark
Open scenarios	×	×	×	~

CODA enables open target scenarios and open object categories

adaptation due to large grounded pre-training of cloud detector

IDEA

IDEA

Knowledge Dissemination Knowledge Separation Knowledge Distillation

CLIP is leveraged to help adaptation.

Knowledge dissemination aims to disseminate knowledge from cloud and CLIP to a CLIP detector, as the existing domain shift and the lack of detection ability of CLIP

Knowledge Dissemination **Knowledge Separation** Knowledge Distillation

Knowledge separation and distillation adopts a divide-and-conquer manner.

Knowledge separation aims to **separate detection results** from cloud detector and CLIP detector into three parts: consistent, inconsistent, and private (cloud and CLIP) detections IDEA

Knowledge Dissemination Knowledge Separation <a>Knowledge Distillation

Optimal target model Gradient direction Gradients o alignment consistent detections Cloud CLIF Current **Gradients of** target model inconsistent detections

Decision-level fusion strategy

Knowledge distillation mainly focus on fusing inconsistent detections, by learning a Consistent Knowledge Generation network (CKG) using a self-promotion gradient direction alignment

Knowledge Dissemination Knowledge Separation Knowledge Distillation

CLIP detector pre-train loss:

$$\min_{\theta_{clip}} \mathcal{L}_{RPN} + \mathcal{L}_{ROI} + \lambda \mathcal{L}^{1}_{align},$$

Prompt learning loss:

$$\mathcal{L}^1_{align} = ||oldsymbol{e}_p - oldsymbol{e}||_1$$

Prototype updating by exponential moving average:

$$\boldsymbol{e}_{p}^{i} = \eta \cdot \boldsymbol{e}_{p}^{i} + (1 - \eta) \cdot \mathbb{E}_{x \in \mathcal{D}} \frac{1}{|\mathcal{R}|} \sum \mathbb{1}(\boldsymbol{l} = i)\boldsymbol{f},$$

Knowledge Dissemination > Knowledge Separation

Knowledge Distillation

Box matching is used to categorize detections into consistent $\hat{\mathcal{P}}$, inconsistent $\tilde{\mathcal{P}}$, and private detections \mathcal{Q} :

$$\begin{split} \hat{\mathcal{P}} &= \{ (\boldsymbol{y}_{cld}^{i}, \boldsymbol{y}_{clip}^{j}) \, | \, \Gamma_{i,j} = 1, \boldsymbol{l}_{cld}^{i} = \boldsymbol{l}_{clip}^{j} \}, \tilde{\mathcal{P}} = \{ (\boldsymbol{y}_{cld}^{i}, \boldsymbol{y}_{clip}^{j}) \, | \, \Gamma_{i,j} = 1, \boldsymbol{l}_{cld}^{i} \neq \boldsymbol{l}_{clip}^{j} \}. \\ \mathcal{Q} &= \{ \boldsymbol{y}_{cld}^{i} \, | \, \Gamma_{i,*} = 0 \} \cup \{ \boldsymbol{y}_{clip}^{j} \, | \, \Gamma_{*,j} = 0 \}. \end{split}$$

Knowledge Dissemination Knowledge Separation

Target detector is **randomly initialized** and updated by **three losses from detections** and **one alignment loss**:

$$\min_{\theta_T} \mathcal{L}_{con} + \gamma_1 \mathcal{L}_{inc} + \gamma_2 \mathcal{L}_{pri} + \lambda \mathcal{L}^2_{align},$$

Inconsistent detections are fed into the **consistent knowledge generation network (CKG) to fuse them**.

Target detector

Knowledge Distillation

Self-promotion gradient direction alignment for training CKG network:

Gradient from consistent detections is used as the supervised signal

$$\hat{\boldsymbol{g}} = \nabla_{\theta_T} \| \hat{\boldsymbol{p}}_{stu} - \mathbb{I}(\hat{\boldsymbol{l}}_m) \|_2, \quad \tilde{\boldsymbol{g}} = \nabla_{\theta_T} \| \tilde{\boldsymbol{p}}_{stu} - \tilde{\boldsymbol{p}}_{ckg} \|_2,$$
$$\min_{\theta_{ckg}} \mathcal{L}_{ckg} = (1 - sim(\hat{\boldsymbol{g}}, \tilde{\boldsymbol{g}})) + L_{kl}(\hat{\boldsymbol{p}}_{ckg}, \mathbb{I}(\hat{\boldsymbol{l}}_m)).$$

Table 1: Results on **Foggy-Cityscapes** and **BDD100K** under GDINO. Object detection adaptation settings: U – Unsupervised, SF – Source-free, BB – Black-Box, C – Cloud. det: detector.

Foggy-Cityscapes											BDD100K									
Methods	Туре	Tuck	Car	Rder	Pson	Tain	Mcle	Bcle	Bus	mAP	Methods	Туре	Tuck	Car	Rder	Pson	Mcle	Bcle	Bus	mAP
MTOR 3 ICR-CCR 59	U U	21.9 27.2	44.0 49.2	41.4 43.8	30.6 32.9	40.6 36.4	28.3 30.3	35.6 34.6	38.6 45.1	35.1 37.4	SIGMA++ <mark>34</mark> PT [7]	U U	21.1 25.8	65.6 52.7	30.4 39.9	47.5 40.5	17.8 23.0	27.1 28.8	26.3 33.8	33.7 34.9
SED 35	SF	25.5	44.5	40.7	33.2	22.2	28.4	34.1	39.0	33.5	SED 35	SF	20.6	50.4	32.6	32.4	18.9	25.0	23.4	29.0
LODS 33	SF	27.3	48.8	45.7	34.0	19.6	33.2	37.8	39.7	35.8	PETS 39	SF	19.3	62.4	34.5	42.6	17.0	26.3	16.9	31.3
A ² SFOD 10	SF	28.1	44.6	44.1	32.3	29.0	31.8	38.9	34.3	35.4	A ² SFOD [10]	SF	33.2	36.3	50.2	26.6	28.2	24.4	22.5	31.6
IRG 53	SF	24.4	51.9	45.2	37.4	25.2	31.5	41.6	39.6	37.1	BT [13]	SF	24.2	50.4	34.6	32.7	24.7	28.5	24.9	31.4
LPU 🥑	SF	24.0	55.4	50.3	39.0	21.2	30.3	44.2	46.0	38.8	LPU 🧐	SF	24.5	55.2	38.9	41.4	20.9	30.4	23.2	33.5
BiMem 67	BB	23.4	56.9	42.5	42.2	28.5	32.4	41.3	39.7	38.4	DRU 28	SF	27.1	62.7	36.9	45.8	22.7	32.5	28.1	36.6
Cloud det 40	С	30.8	47.5	18.6	34.3	21.0	34.6	41.1	47.4	34.4	Cloud det 40	С	38.7	46.0	11.4	49.2	37.8	33.5	47.4	37.7
CLIP 47	С	9.7	28.6	11.5	19.5	1.1	12.8	17.9	21.9	15.4	CLIP 47	С	23.6	31.1	4.4	6.7	18.0	11.4	27.7	17.5
CLIP det	С	8.2	46.9	27.5	34.1	16.5	24.9	31.5	36.2	28.2	CLIP det	С	34.3	53.4	14.1	31.7	28.7	24.6	36.7	31.9
COIN	С	27.4	57.9	42.3	41.6	25.9	32.7	41.2	43.1	39.0	COIN	С	46.6	56.8	23.5	45.5	32.0	33.0	40.6	39.7
Oracle	-	32.5	67.1	50.8	46.7	43.1	34.4	43.2	54.4	46.5	Oracle	-	54.0	70.6	42.3	51.4	35.8	41.5	53.2	49.8

Table 3: Quantitative results on **KITTI** under GDINO. U – Unsupervised, C – Cloud. det: detector.

Туре	Methods	AP of Car	Methods	AP of Car	Methods	AP of Car	Methods	AP of Car
U	DA-Faster [8]	64.1	MAF [23]	72.1	SCL [50]	72.7	ATF [24]	73.5
С	Cloud det [40]	45.2	CLIP 47	62.1	CLIP det	79.9	COIN	80.8

			Cityscapes													
Methods	Туре	Truck	Car	Rider	Person	Train	Mcycle	Bcycle	Bus	mAP	Car					
Cloud det [40]	С	37.5	59.9	16.4	43.4	26.1	42.7	48.4	62.6	42.1	46.5					
CLIP 47	С	15.9	36.9	15.5	27.8	0.9	15.7	20.5	31.8	20.6	46.4					
CLIP det	С	11.3	55.8	35.1	39.1	33.8	32.0	33.7	44.7	35.7	60.0					
COIN	С	26.9	64.3	47.5	47.0	26.4	44.4	46.9	52.8	44.5	62.4					
Oracle	-	34.7	70.4	56.4	50.5	43.0	38.7	46.9	58.9	49.9	79.2					

Table 4: Quantitative results on **Cityscapes** and **Sim10K** under GDINO. C – Cloud. det: detector.

Table 2: Results on **Clipart** under GDINO. Object detection adaptation settings: SF – Source-free, U – Unsupervised, C – Cloud. det: detector.

Methods	Туре	Aero	Bcle	Bird	Boat	Botl	Bus	Car	Cat	Chair	Cow	Tble	Dog	Hrs	Bike	Pson	Plnt	Shep	Sofa	Tain	Tv	mAP
MGADA 75	U	35.5	64.6	27.8	34.5	41.6	66.4	49.8	26.8	43.6	56.7	24.3	20.9	43.2	84.3	74.2	41.1	17.4	27.6	56.5	57.6	44.8
SIGMA++ 34	U	36.3	54.6	40.1	31.6	58.0	60.4	46.2	33.6	44.4	66.2	25.7	25.3	44.4	58.8	64.8	55.4	36.2	38.6	54.1	59.3	46.7
CIGAR 41	U	35.2	55.0	39.2	30.7	60.1	58.1	46.9	31.8	47.0	61.0	21.8	26.7	44.6	52.4	68.5	54.4	31.3	38.8	56.5	63.5	46.2
TFD 54	U	27.9	64.8	28.4	29.5	25.7	64.2	47.7	13.5	47.5	50.9	50.8	21.3	33.9	60.2	65.6	42.5	15.1	40.5	45.5	48.6	41.2
LODS 33	SF	43.1	61.4	40.1	36.8	48.2	45.8	48.3	20.4	44.8	53.3	32.5	26.1	40.6	86.3	68.5	48.9	25.4	33.2	44.0	56.5	45.2
IRG 53	SF	20.3	47.3	27.3	19.7	30.5	54.2	36.2	10.3	35.1	20.6	20.2	12.3	28.7	53.1	47.5	42.4	9.1	21.1	42.3	50.3	31.5
WSCoL 61	SF	42.8	57.2	34.9	43.2	41.5	78.9	44.7	3.0	50.8	54.0	40.1	19.6	48.7	88.2	61.2	46.5	30.3	43.0	52.6	46.2	46.4
Cloud det 40	С	76.2	91.8	67.4	62.7	60.2	82.2	68.4	43.7	77.9	52.9	69.8	39.3	64.4	85.6	88.1	78.9	30.8	56.9	72.9	66.5	66.8
CLIP 47	С	62.3	70.1	42.5	42.7	50.9	50.0	44.8	47.8	22.8	59.5	28.6	34.2	43.7	51.4	61.1	59.8	24.1	28.1	50.4	50.5	46.3
CLIP det	С	61.4	56.5	46.9	48.8	57.4	54.1	49.7	40.2	32.7	48.7	16.6	33.8	51.4	50.4	62.8	60.6	25.7	28.8	43.9	52.6	46.2
COIN	С	82.0	87.6	70.1	58.1	63.7	63.8	68.7	55.2	70.5	76.3	59.0	58.8	68.6	82.9	88.0	67.3	43.1	53.3	78.7	73.4	68.5
Oracle	-	100	99.1	98.7	96.5	96.3	100	99.5	99.7	100	99.9	99.4	100	99.4	100	99.8	99.4	100	100	100	100	99.4

Ablation study

Table 5: Ablation study on Foggy-Cityscapes and Cityscapes under GDINO. det: detector.

		Loss	ses		mAP	
Methods	\mathcal{L}_{align}	\mathcal{L}_{con}	\mathcal{L}_{inc}	\mathcal{L}_{pri}	Foggy-Cityscapes	Cityscapes
Cloud det [40]	×	×	×	×	34.4	42.1
CLIP [47]	×	×	×	×	15.4	20.6
	×	×	×	×	27.4	35.1
CLIP det	\checkmark	×	\times	\times	28.2	35.7
	×		×	×	36.7	41.7
	\checkmark		×	×	37.1	42.4
	\checkmark	\checkmark	×		37.5	42.9
				×	38.4	43.8
COIN		\checkmark		\checkmark	39.0	44.5

Ablation study

Table 6: Ablation study for decision-level fusion of inconsistent detections on **Foggy-Cityscapes** under GDINO. Detections are filtered by $\pi = 0.7$ for fair comparison. det: detector. probs: probabilities. avg: average. s-avg: score-weighted average.

Methods	Truck	Car	Rider	Person	Train	Mcycle	Bcycle	Bus	mAP
COIN w/ cloud det probs	25.1	56.1	45.3	40.1	20.5	33.7	41.3	39.3	37.7
COIN w/ CLIP det probs	22.1	56.4	44.5	39.5	26.8	32.4	40.4	42.4	38.1
COIN w/ avg	24.8	55.8	44.1	39.9	21.7	32.8	40.9	43.7	38.0
COIN w/ s-avg	24.2	56.4	45.9	40.7	24.1	31.3	40.4	41.7	38.1
COIN w/ CKG	27.4	57.9	42.3	41.6	25.9	32.7	41.2	43.1	39.0

Thank you!To learn more about this paper,welcome to our poster session 2