Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models

Adam Karvonen *

Benjamin Wright *

Can Rager

Rico Angell

Jannik Brinkmann

Logan Smith

Claudio Mayrink Verdun

David Bau

Samuel Marks

Fundamental Units of Representation

Fundamental Units of Representation

Standard SAE Training

Train sparse autoencoder (SAE) to reconstruct activations using only a few feature vectors

Standard SAE Training

Train sparse autoencoder (SAE) to reconstruct activations using only a few feature vectors

+ Simple and efficient

Standard SAE Training

Train sparse autoencoder (SAE) to reconstruct activations using only a few feature vectors

- + Simple and efficient
- + Entirely unsupervised!

Many new SAEs proposed (or rediscovered)

Google DeepMind Improving Sparse	Dictionary Learning with Gated
Senthooran Rajar Rohin Shah and N *: Joint contribution.	Geogle DeepMind 20247.22 Jumping Ahead: Improving Reconstruction Fidel Senthooran Kramár and ': Care contrib by Anish N BatchTopK: A Simple Improvement for TopK-SAEs by Bart Bussmann, Patrick Leask, Neel Nanda

Many new SAEs proposed (or rediscovered)

Google DeepMind

2024-5

Improving Dictionary Learning with Gated

Sparse Autoencoders

Scaling and evaluating sparse autoencoders

How can we determine which is best?

Current Evaluation Strategies

Unsupervised Proxy Metrics

Manual Inspection

10 Transit infrastructure

o many	delays	when we	were en « re	oute.	Since	the un	derwater	tunnel	between	Oaklan	d and	SF is	a ch	oke p
le are	trying	to leave	, etc) on	the	approad	hes to	⊷ <mark>brid</mark> ges	/tunnel	s and i	n <mark>the</mark>	downtow	vn/mic	ltown	соге
ney rar	out a	nd plans	to continu	e nor	th acr	oss the	aqu ed u	ct towar	d Wrexh	am had	to be	aband	oned .	" " N

Board Games

- ... have an **explicit** board state.
- ... easily enumerable feature space.
- ... board states are **objective**.

Board Game Language Models

Consider chess GPT, trained to predict the next character in transcripts of real chess games

1.c4 Nf6 2.Nc3 c5 3.d4 e6 4.d5 d6 5.e4 exd5 6.exd5 Be7 7.Bf4 0-0 8.Be2 a6 9.Nf3 Bd7 10.0-0 Re8 11.h3 Bf5 12.Bh2 Bf8

We can extract explicit and deterministic board states from the model

We also consider OthelloGPT as a much simpler game

Board State Properties (BSPs)

We evaluate ~1000 BSPs varying from low-level board states to high-level strategy

Then, we automatically find features connected to BSPs

SAE feature representing en passant

1.e4 c5 2.Nc3 Nc6 3.Nf3 g6 4.d4 cxd4 5.Nxd4 Bg7 6.Be3 Nf6 7.Qd2 Ng4 8.Nxc6 bxc6 9.Bd4 Bxd4 10.Qxd4 0-0 11.Be2 d6 12.Bxg4 Bxg4 13.f3 Be6 14.h4 Qb6 15.0-0-0 Rab8 16.Qxb6 axb6 17.h5 Kg7 18.b3 b5 19.Kb2 b4 20.Ne2 c5 21.Nf4 Ra8 22.Ra1 Ra3 23.c4 Ra7 24.a4

Contribution #1: Board Game Metrics

Using our BSP's, we construct two *supervised* SAE metrics:

- 1) **<u>Coverage</u>**: How well do features align with individual BSPs?
- 2) **Board Reconstruction:** How well can we reconstruct the board given SAE features?

Coverage

How well do features align with individual BSPs?

BSP	Max F1 score of any SAE feature
White Pawn on B6	0.99
White Pawn on B7	0.83
Black Queen on H7	0.23
Average	0.63

Board Reconstruction

How well can we reconstruct the board given SAE features?

1. Identify high precision SAE features

(i.e. when the feature is active, the BSP is present)

Feature	is high-precision for
#0	White Pawn on B6
# 1	None
#2	White Pawn on B6
# N	Black Queen on D5 and White Pawn on D4

Board Reconstruction

How well can we reconstruct the board given SAE features?

1. Identify high precision SAE features	2. Reconstruct board state based on feature activations
(i.e. when the feature is active, the BSP is present)	(on an unseen test game)

Board Reconstruction

How well can we reconstruct the board given SAE features?

 Identify high precision SAE features (i.e. when the feature is active, the BSP is present) 		2. Reconstruct board state based on feature activations (on an unseen test game)	3. Compare to ground truth by calculating F1-score			
Feature	is high-precision for	Reconstruction	Ground Truth			
#0	White Pawn on B6					
# 1	None					
#2	White Pawn on B6					
# N	Black Queen on D5 and White Pawn on D4					

Contribution #2: *p*-Annealing SAE training technique

Idea: Replace L_1 -norm minimization with L_p^p -norm, anneal p during training

$$\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}, \mathbf{a}, p) = \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + \lambda \|\mathbf{a}\|_p^p$$

BSP Metrics Correlate with SAE Quality

BSP Metrics Correlate with SAE Quality

BSP Metrics Can Differentiate Between SAE Architectures

Conclusions and Future Work

How can we compare different SAEs?

What fraction of the GPT's world model do the SAEs capture?

Future work:

- 1. Create better evaluations for natural language
- 2. Further understand board game models