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* Whether this image is labeled as Human or Horse, neither label is accurate

Category:  Horse

Confidence:  0.95

Atypical Sample Deep Neural Network Model Prediction
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• Typical samples are those that exhibit similarity to a majority of other samples at the semantic
level. These samples possess typical features that are easier for deep neural networks to learn
and generalize.

• Atypical samples, on the other hand, differ significantly from other samples at the semantic
level. They pose a challenge for the model to generalize due to their uniqueness. These samples
are often located near the decision boundary.

[1] Beyond confidence: Reliable models should also consider atypicality. NeurIPS 2023
[2] Unleashing mask: Explore the intrinsic out-of-distribution detection capability. ICML2023.



Measurement of typicalness

[1] Beyond confidence: Reliable models should also consider atypicality. NeurIPS 2023
[2] Unleashing mask: Explore the intrinsic out-of-distribution detection capability. ICML2023.

The nearest neighbor distance between sample 
features and the training set feature collection

• High feature dimensionality of samples

• Large number of training samples

• Time and resource consuming



Distinguishing typical samples from atypical samples

•  using ID and OOD samples as examples

• X-axis shows the sample index
• Y-axis shows the mean responses across channels.
• ID shows higher positive responses compared to 

OOD
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Calculate Typicalness

Add mean and varience of correct prediction to Quene

Calculate dynaminc magnitude 

Get minimal  distance

Distance normanlization



How to design the loss function?

•  fully optimize in the direction of typical samples, while not approaching infinity for atypical samples

Typicalness Prediction Magnitude T Loss Explanation

Atypical Correct ↑ ↓ After correct prediction, add small force to 
approach label direction

Typical Correct ↓ ↑ After correct prediction, add large force to 
approach prediction direction

—— Incorrect ↑ ↑ No action for wrongly predicted samples due 
to avoid impact on feature extraction

—— Incorrect ↓ ↓

Dynamic
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