Trustworthy machine learning

Typicalness-Aware Learning for Failure Detection

Yijun Liu¹ Jiequan Cui² Zhuotao Tian¹⊠ Senqiao Yang³
Qingdong He⁴ Xiaoling Wang¹ Jingyong Su¹⊠
{liuyijun}@stu.hit.edu.cn
¹Harbin Institute of Technology (Shenzhen) ²Nanyang Technological University
³The Chinese University of Hong Kong ⁴Tencent Youtu Lab

Key Insight & Motivation

The Proposed Method

04 Experimental Results

Key Insight & Motivation

^{*} Whether this image is labeled as Human or Horse, neither label is accurate

Key Insight & Motivation

^{*} Whether this image is labeled as Human or Horse, neither label is accurate

Key Insight & Motivation

* Whether this image is labeled as Human or Horse, neither label is accurate

- Typical samples are those that exhibit similarity to a majority of other samples at the semantic level. These samples possess typical features that are easier for deep neural networks to learn and generalize.
- Atypical samples, on the other hand, differ significantly from other samples at the semantic level. They pose a challenge for the model to generalize due to their uniqueness. These samples are often located near the decision boundary.

Typical samples; ID; Fish

Atypical samples; ID; Covarite Shift; Fish

Atypical samples; OOD; Semantic Shift; Texture

Measurement of typicalness

- High feature dimensionality of samples
- Large number of training samples
- Time and resource consuming

The nearest neighbor distance between sample features and the training set feature collection

^[2] Unleashing mask: Explore the intrinsic out-of-distribution detection capability. ICML2023.

Distinguishing typical samples from atypical samples

using ID and OOD samples as examples

- X-axis shows the sample index
- Y-axis shows the mean responses across channels.
- ID shows higher positive responses compared to OOD

Typicalness-Aware Learning

Calculate Typicalness

$$Q = \{(\mu_i, \sigma_i^2) \mid \hat{y_i} = y\}$$

Add mean and varience of correct prediction to Quene

$$d = \min_{(\mu_j,\sigma_j^2) \in Q} W((\mu_{new},\sigma_{new}^2),(\mu_j,\sigma_j^2))$$

$$au = 1 - rac{d - d_{min}}{d_{max} - d_{min}}$$
.

Distance normanlization

Get minimal distance

$$T(au) = T_{
m min} + (1- au) imes (T_{
m max} - T_{
m min})$$

Calculate dynaminc magnitude

How to design the loss function?

fully optimize in the direction of typical samples, while not approaching infinity for atypical samples

$$\mathcal{L}_{\text{TAL}}(\boldsymbol{f}, y) = -\log \frac{e^{\hat{\boldsymbol{f}}_{\boldsymbol{y}} * T(\boldsymbol{\tau})}}{\sum_{i=1}^{k} e^{\hat{\boldsymbol{f}}_{i} * T(\boldsymbol{\tau})}}.$$
 Dynamic

Typicalness	Prediction	Magnitude T	Loss	Explanation
Atypical	Correct	1	1	After correct prediction, add small force to approach label direction
Typical	Correct	1	1	After correct prediction, add large force to approach prediction direction
	Incorrect	1	1	No action for wrongly predicted samples due
	Incorrect	1	\downarrow	to avoid impact on feature extraction

Experimental Results

Table 1: Evaluation results of the proposed TAL on CIFAR 100.

Architecture	Method	Old setting FD			OOD Detection			New setting FD			ID-ACC
		AURC↓	FPR95↓	AUROC↑	AURC↓	FPR95↓	AUROC↑	AURC↓	FPR95↓	AUROC↑	ID-ACC
		CIFAR100 vs. SVHN									
	MSP[14]	99.83	67.49	84.07	293.44	83.41	74.55	376.42	66.92	84.00	72.01
	Cosine [47] [47]	96.53	65.15	84.42	271.13	78.30	79.31	361.87	56.23	86.93	72.01
	Energy 23	135.85	74.66	77.20	275.39	83.18	77.78	387.44	66.96	83.21	72.01
	MaxLogit 14	133.19	72.33	77.96	275.85	82.53	77.73	385.81	65.08	83.56	72.01
	Entropy 33	100.05	66.28	84.12	287.62	81.20	75.93	373.49	61.33	84.73	72.01
ResNet110 [13]	Mahalanobis [4]	114.21	73.48	80.41	263.49	72.70	80.55	368.55	58.74	85.74	72.01
	Gradnorm [16]	369.86	98.82	35.30	490.21	98.17	49.26	679.48	98.69	42.76	72.01
	SIRC 40	100.56	66.37	84.01	287.93	81.03	75.90	374.12	61.29	84.65	72.01
	LogitNorm [39]	125.59	72.87	79.71	235.50	73.23	83.35	356.88	55.80	87.80	70.34
	OpenMix 49	85.66	63.82	85.25	342.16	87.03	69.27	406.80	70.37	80.25	73.68
	TAL	90.60	64.84	85.36	259.64	76.37	80.28	347.72	54.39	87.89	72.45
	FMFP 48	69.83	62.17	87.15	284.13	81.77	74.98	345.37	62.99	84.86	75.18
	TAL w/ FMFP	73.16	64.82	85.51	245.62	78.61	81.59	320.73	55.22	88.48	75.59

Experimental Results

Table 2: Evaluation results of the proposed TAL on ImageNet.

Architecture	Method	Old setting FD			OOD Detection			New setting FD			ID-ACC	
		AURC↓	FPR95↓	AUROC†	AURC↓	FPR95↓	AUROC↑	AURC↓	FPR95↓	AUROC†	ID-ACC	
0		Imagenet vs. Textures										
	MSP 14	72.73	63.95	86.18	301.27	46.01	87.21	351.26	49.64	86.99	76.13	
	Cosine 47	102.98	69.93	79.49	298.35	50.64	87.54	359.74	54.43	86.17	76.13	
	Energy [23]	118.66	76.33	75.81	279.16	35.64	90.47	351.93	43.69	87.74	76.13	
	MaxLogit [14]	113.35	72.11	77.29	278.52	34.1	90.57	349.3	41.59	88.1	76.13	
	Entropy [33]	74.61	67.07	85.48	292.54	38.3	88.92	344.73	43.95	88.27	76.13	
	Mahalanobis 4	208.22	96.19	54.23	288.17	57.61	86.51	397.18	65.34	80.22	76.13	
ResNet50	Residual [40]	238.18	97.01	49.0	316.1	57.77	83.89	431.12	65.55	77.12	76.13	
	Gradnorm [16]	206.99	89.66	57.88	272.83	30.21	91.55	385.97	42.45	84.89	76.13	
	SIRC 40	72.91	63.67	86.11	295.13	38.88	88.53	346.42	43.82	88.03	76.13	
	TAL	64.66	64.93	87.11	290.5	47.66	87.51	338.45	50.11	88.29	76.43	
	TAL+SIRC	64.55	63.66	87.15	288.23	46.91	87.88	336.56	49.68	88.35	76.43	

T THE TANK

THANKS

