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I. Introduction

Problem: Diffusion models generate images by progressively
denoising a random noise 𝒙𝑇 ∼ 𝒩(𝟎, 𝜎(𝑇 )2) to its corre"
sponding clean image with a probabilistic ODE:

𝑑𝒙 = −�̇�(𝑡)𝜎(𝑡)∇𝒙 log 𝑝(𝒙; 𝜎(𝑡))𝑑𝑡, (1)

where 𝜎(𝑡) is a predefined schedule. In practice the score
function ∇𝒙 log 𝑝(𝒙; 𝜎(𝑡)) is approximated by:

∇𝒙 log 𝑝(𝒙; 𝜎(𝑡)) = (𝒟𝜽(𝒙; 𝜎(𝑡)) − 𝒙)/𝜎(𝑡)2, (2)

where 𝒟𝜽(𝒙; 𝜎(𝑡)) is a deep network with parameters 𝜽
trained with the denoising score matching objective:

min
𝜽
𝔼𝒙∼𝑝data,𝜺∼𝒩(𝟎,𝜎(𝑡)2𝑰)‖𝒟𝜽(𝒙 + 𝜺; 𝜎(𝑡)) − 𝒙‖

2
2. (3)

Since we don’t have access to the ground truth 𝑝data, in practice
the denoising score matching (3) is instead performed on a fi"
nite number of training samples. Suppose the training dataset
contains a finite number of data points 𝒚1, 𝒚2,…, 𝒚𝑁 , a natural
way to model the data distribution is to model it as a multi"
delta distribution 𝑝(𝒙) = 1

𝑁 ∑
𝑁
𝑖=1 𝛿(𝒙 − 𝒚𝑖). In this case, the

optimal denoiser takes the form:

𝒟𝑀 =
∑𝑁
𝑖=1𝒩(𝒙; 𝒚𝒊, 𝜎(𝑡)

2𝑰)𝒚𝑖
∑𝑁
𝑖=1𝒩(𝒙; 𝒚𝒊, 𝜎(𝑡)

2𝑰)
. (4)

, which is essentially a softmax"weighted combination of the
finite data points. However, such optimal denoisers can only
generate exact replicas of the training samples, therefore have
no generalizability. In this work, we aim to understand what
kind of function is learned by the 𝒟𝜽(𝒙; 𝜎(𝑡)) in practice.

II. Emerging Linearity in Diffuison Models

It is well"known that Diffusion models transition from memo"
rization to generalization as the training dataset size increases.
Interestingly, we observe that this transition is accompanied
by an emerging linearity of 𝒟𝜽(𝒙; 𝜎(𝑡)), as shown in Fig"
ure 1. Here the generalization score (GL Score) is defined as
1
𝑘∑

𝑘
𝑖=1

‖𝒙𝑖−NN𝑌 (𝒙𝑖)‖2
‖𝒙𝑖‖22

, where NN denotes the nearest neighbor
of 𝒙𝑖 in the dataset 𝑌  and the linearity is measured by comput"

ing the cosine similarity between 𝒟𝜽(𝛼𝒙1 + 𝛽𝒙2; 𝜎(𝑡)) and
𝛼𝒟𝜽(𝒙1; 𝜎(𝑡)) + 𝛽𝒟𝜽(𝒙2; 𝜎(𝑡)).

Figure 1: Diffusion models exhibit increasing linearity as they
transition from memorization to generalization.

This emerging linearity motivates us to ask two questions: (i)
to what extend can a diffusion model be approximated by a
linear model and (ii) if diffusion models can be approximated
linearly, what are the underlying characteristics of this linear
approximation?

III. The Gaussian Inductive Bias

To address these questions, we propose to investigate the linear
properties of diffusion models by finding their best linear
approximations (with a bias term) 𝒟𝐿(𝒙; 𝜎(𝑡)) ≔ 𝑾𝜎(𝑡)𝒙 +
𝒃𝜎(𝑡) for a given diffusion denoiser 𝒟𝜽(𝒙; 𝜎(𝑡)). Here 𝑾𝜎(𝑡)
and 𝒃𝜎(𝑡) can be learned by solving the following optimization
problem with gradient descent

min𝑾𝜎(𝑡),𝒃𝜎(𝑡)
𝔼𝒙∼𝑝data,𝜺∼𝒩(𝟎,𝜎(𝑡)2𝑰)‖𝑾𝜎(𝑡)(𝒙+𝜺)+𝒃𝜎(𝑡)−𝒟𝜽(𝒙;𝜎(𝑡))‖22.(5)

After obtaining the linear denosiers, we can compare the
differences between them and the actual diffusion denoisers
𝒟𝜽(𝒙; 𝜎(𝑡)) with the score approximation error defined as:

Score-Difference(t)≔𝔼𝒙∼𝑝data,𝜺∼𝒩(𝟎,𝜎(𝑡)2𝑰)
√ ‖𝒟𝜽(𝒙;𝜎(𝑡))−𝒟𝐿(𝒙;𝜎(𝑡))‖

2
2

𝑑 . (6)

The results are shown in Figure 2, from which we observe the
linear models generate samples that closely match those from
the actual diffusion models, which highlights the important
role of diffusion models’ linear structure. Furthermore, the
linear denoisers 𝒟𝐿(𝒙; 𝜎(𝑡)) is nearly identical to 𝒟𝐺(𝒙; 𝜎(𝑡))
with the following form:

𝒟𝐺(𝒙; 𝜎(𝑡)) ≔ 𝒖 +𝑼Λ̃𝜎(𝑡)𝑼𝑻 (𝒙 − 𝒖), (7)

where 𝒖 = 1
𝑁 ∑

𝑁
𝑖 𝒚𝑖, 𝚺 = 𝑼𝚲𝑼

𝑇  are the mean and Co"
variance of the training dataset respectively, and �̃�𝜎(𝑡) =
𝚲(𝚲+ 𝜎(𝑡)2𝑰)−1.

Figure 2: Score approximation error and sampling Trajectory..

Importantly, 𝒟𝐺(𝒙; 𝜎(𝑡)) is the optimal solution to (3) under
the assumption that 𝑝data(𝒙) = 𝒩(𝒖,𝚺), i.e., a Multivariate
Gaussian distribution. Our results demonstrate that diffusion
models in practice have the inductive bias towards learning
denoisers that are similar to the optimal denoisers under the
Gaussian data assumption. We term this inductive bias as the
Gaussian inductive bias.

IV. When does the inductive bias emerges?

Interestingly, the Gaussian inductive bias is most pronounced
when the model capacity is relatively small and during the
early training iterations. As illustrated in Figure 3, diffusion
models generalize if we use a model with small capacity or
applying early stopping. In such cases, the final generated
images match those generated from the Gaussian denoisers
𝒟𝐺(𝒙; 𝜎(𝑡)).

Figure 3: Small model capacity and early stopping prompt gen"
eralization of diffusion models
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