Detecting and Measuring Confounding Using Causal Mechanism Shifts

Abbavaram Gowtham Reddy Vineeth N Balasubramanian

NeurIPS 2024

What is a confounding variable?

• Confounding variables induces spurious associations.

Preliminaries: Confounding Variables

What is a confounding variable?

• Confounding variables induces spurious associations.

Figure 1: Edu: Education, Wag: Wages/Income, Inv: Investments.

What is a confounding variable?

• Confounding variables induces spurious associations.

Figure 1: Edu: Education, Wag: Wages/Income, Inv: Investments.

Why study confounding?

• Distinguish between causal and spurious associations.

What is a confounding variable?

• Confounding variables induces spurious associations.

Figure 1: Edu: Education, Wag: Wages/Income, Inv: Investments.

Why study confounding?

- Distinguish between causal and spurious associations.
- Estimate causal effects by adjusting confounding variables.

• $\mathbb{P}(X|\mathbf{PA}_{\times})$ is the causal mechanism of X.

- $\mathbb{P}(X|\mathbf{PA}_{x})$ is the causal mechanism of X.
- $\mathbb{P}^{c}(X|\mathbf{PA}_{x}) \neq \mathbb{P}^{c'}(X|\mathbf{PA}_{x}) \implies$ mechanism change.
- *c*, *c*['] are known as context/environments/domains, etc.

- $\mathbb{P}(X|\mathbf{PA}_{x})$ is the causal mechanism of X.
- $\mathbb{P}^{c}(X|\mathbf{PA}_{x}) \neq \mathbb{P}^{c'}(X|\mathbf{PA}_{x}) \implies$ mechanism change.
- c, c' are known as context/environments/domains, etc.
- Interventions create contexts.

- $\mathbb{P}(X|\mathbf{PA}_{\times})$ is the causal mechanism of X.
- $\mathbb{P}^{c}(X|\mathbf{PA}_{x}) \neq \mathbb{P}^{c'}(X|\mathbf{PA}_{x}) \implies$ mechanism change.
- c, c' are known as context/environments/domains, etc.
- Interventions create contexts.
- Interventions can be soft or hard.
- Hard intervention: X is set to x.
- Soft intervention: $\mathbb{P}(X)$ is changed to $\tilde{\mathbb{P}}(X)$.

- $\mathbb{P}(X|\mathbf{PA}_{x})$ is the causal mechanism of X.
- $\mathbb{P}^{c}(X|\mathbf{PA}_{x}) \neq \mathbb{P}^{c'}(X|\mathbf{PA}_{x}) \implies$ mechanism change.
- c, c' are known as context/environments/domains, etc.
- Interventions create contexts.
- Interventions can be soft or hard.
- Hard intervention: X is set to x.
- Soft intervention: $\mathbb{P}(X)$ is changed to $\tilde{\mathbb{P}}(X)$.

Next: Detecting and measuring confounding using mechanism shifts.

• Let X be a set of observed variables.

- Let X be a set of observed variables.
- $X_S \subset X$ be a set of variables indexed by S.

- Let X be a set of observed variables.
- $X_S \subset X$ be a set of variables indexed by S.
- $C_{S \land \neg R}$ be the contexts with mechanism changes for X_S but not X_R .

- Let X be a set of observed variables.
- $X_S \subset X$ be a set of variables indexed by S.
- $C_{S \wedge \neg R}$ be the contexts with mechanism changes for X_S but not X_R .
- Consider three sets of contexts: $C_{\{i\} \land \neg P_{ij}}$, $C_{\{j\} \land \neg P_{ji}}$, $C_{\{i\} \land \{j\}}$.

- Let X be a set of observed variables.
- $X_S \subset X$ be a set of variables indexed by S.
- $C_{S \wedge \neg R}$ be the contexts with mechanism changes for X_S but not X_R .
- Consider three sets of contexts: $C_{\{i\} \land \neg P_{ij}}$, $C_{\{j\} \land \neg P_{ji}}$, $C_{\{i\} \land \{j\}}$.

CSE, IITH

Setting 1: Detecting and Measuring Confounding

Directed Information

$$I(X_i o X_j) \coloneqq \mathcal{D}_{\mathcal{KL}}(\mathbb{P}(X_i|X_j) || \mathbb{P}(X_i | do(X_j)) | \mathbb{P}(X_j)) \coloneqq \mathbb{E}_{\mathbb{P}(X_i, X_j)} \log rac{\mathbb{P}(X_i | X_j)}{\mathbb{P}(X_i | do(X_j))}$$

Setting 1: Detecting and Measuring Confounding

Directed Information

$$I(X_i o X_j) \coloneqq D_{\mathcal{KL}}(\mathbb{P}(X_i|X_j) || \mathbb{P}(X_i | do(X_j)) | \mathbb{P}(X_j)) \coloneqq \mathbb{E}_{\mathbb{P}(X_i, X_j)} \log rac{\mathbb{P}(X_i | X_j)}{\mathbb{P}(X_i | do(X_j))}$$

Graph	$I(X_i \rightarrow X_j)$	$I(X_j \rightarrow X_i)$
\downarrow $X_i \rightarrow X_j$	> 0	= 0
$ X_j \to X_i $	= 0	> 0
$ \begin{array}{c c} & X_i \to X_j \\ \hline Z \to X_i, Z \to X_j \\ \hline \\ & X_j \to X_i \\ Z \to X_i, Z \to X_i \end{array} $	> 0	> 0
$ \begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	> 0	> 0

Table 1: Directed information for various graphs.

Given the contexts $C_{\{i\} \land \neg P_{ij}}$ and $C_{\{j\} \land \neg P_{ji}}$, the measure of confounding $CNF(X_i, X_j)$ is defined as

$$CNF(X_i, X_i) := 1 - e^{-\min(I(X_i \rightarrow X_j), I(X_j \rightarrow X_i))}$$

Given the contexts $C_{\{i\} \land \neg P_{ij}}$ and $C_{\{j\} \land \neg P_{ji}}$, the measure of confounding $CNF(X_i, X_j)$ is defined as

$$CNF(X_i, X_j) := 1 - e^{-\min(I(X_i \rightarrow X_j), I(X_j \rightarrow X_i))}$$

• Why 'min'? Why exponential?

Given the contexts $C_{\{i\} \land \neg P_{ij}}$ and $C_{\{j\} \land \neg P_{ji}}$, the measure of confounding $CNF(X_i, X_j)$ is defined as

$$CNF(X_i, X_j) := 1 - e^{-\min(I(X_i \rightarrow X_j), I(X_j \rightarrow X_i))}$$

- Why 'min'? Why exponential?
- Why directed information from both directions?

Given the contexts $C_{\{i\} \land \neg P_{ij}}$ and $C_{\{j\} \land \neg P_{ji}}$, the measure of confounding $CNF(X_i, X_i)$ is defined as

$$CNF(X_i, X_j) := 1 - e^{-\min(I(X_i \rightarrow X_j), I(X_j \rightarrow X_i))}$$

- Why 'min'? Why exponential?
- Why directed information from both directions?
- Get $\mathbb{P}(X_j|X_i)$ using observational data.
- $\mathbb{P}(X_j|do(X_i)) = \mathbb{E}_{c \in \mathbf{C}_{\{i\} \land \neg P_{ij}}}[\mathbb{P}^c(X_j|X_i)]$

Conditional Directed Information

$$\begin{split} I(X_i \to X_j | X_o) &\coloneqq D_{\mathcal{KL}}(\mathbb{P}(X_i | X_j, X_o) || \mathbb{P}(X_i | do(X_j), X_o) || \mathbb{P}(X_j, X_o)) \\ &\coloneqq \mathop{\mathbb{E}}_{\mathbb{P}(X_i, X_j, X_o)} \log \frac{\mathbb{P}(X_i | X_j, X_o)}{\mathbb{P}(X_i | do(X_j), X_o)} \end{split}$$

- Measure unobserved confounding by conditioning on observed confounding.
- Measure of conditional confounding can be calculated as

$$CNF(X_i, X_j|X_o) := 1 - e^{-\min(I(X_i \rightarrow X_j|X_o), I(X_j \rightarrow X_i|X_o))}$$

Setting 1: Detecting and Measuring Confounding

• How to know whether a set **X**_S of variables share a common confounder?

Setting 1: Detecting and Measuring Confounding

• How to know whether a set **X**_S of variables share a common confounder?

Theorem

A set of observed variables X_S are jointly unconfounded if and only if there exists three variables $X_i, X_j, X_k \in X_S$ such that $I(X_i \to X_j | X_k) = I(\{X_i X_k\} \to X_j).$ • How to know whether a set **X**_S of variables share a common confounder?

Theorem

A set of observed variables X_S are jointly unconfounded if and only if there exists three variables $X_i, X_j, X_k \in X_S$ such that $I(X_i \to X_j | X_k) = I(\{X_i X_k\} \to X_j).$

• Joint confounding effect among a set X_S of variables is defined as

$$CNF(\mathbf{X}_{S}) = \sum_{i \in S} CNF(\mathbf{X}_{S \setminus \{i\}}, X_{i})$$

Settings 2 and 3: Detecting and Measuring Confounding

- Setting 2: Given $C_{\{i\} \land \{j\}}$, use mutual information between $\mathbb{E}(X_i), \mathbb{E}(X_j)$.
- Setting 3: Given $C_{\{i\}\cup\{j\}}$, use mutual information among $\mathbb{E}(X_i), \mathbb{E}(X_j), \mathbb{E}(X_i|X_j), \mathbb{E}(X_j|X_i).$

Settings 2 and 3: Detecting and Measuring Confounding

- Setting 2: Given $C_{\{i\} \land \{j\}}$, use mutual information between $\mathbb{E}(X_i), \mathbb{E}(X_j)$.
- Setting 3: Given $C_{\{i\}\cup\{j\}}$, use mutual information among $\mathbb{E}(X_i), \mathbb{E}(X_j), \mathbb{E}(X_i|X_j), \mathbb{E}(X_j|X_i).$
- We propose pairwise, joint, and conditional confounding.

Settings 2 and 3: Detecting and Measuring Confounding

- Setting 2: Given $C_{\{i\} \land \{j\}}$, use mutual information between $\mathbb{E}(X_i), \mathbb{E}(X_j)$.
- Setting 3: Given $C_{\{i\}\cup\{j\}}$, use mutual information among $\mathbb{E}(X_i), \mathbb{E}(X_j), \mathbb{E}(X_i|X_j), \mathbb{E}(X_j|X_i).$
- We propose pairwise, joint, and conditional confounding.
- Symmetry: $CNF(X_i, X_j | X_o) = CNF(X_j, X_i | X_o)$.
- <u>Positivity</u>: $CNF(X_i, X_j | X_o) > 0$ if and only if there exists an unobserved confounding variable Z between X_i, X_j .
- <u>Monotonicity</u>: $CNF(X_i, X_j) > CNF(X_k, X_l) \implies X_i, X_j$ are strongly confounded than X_k, X_l .

Results: Detecting and Measuring Confounding

Results: Detecting and Measuring Confounding

Results: Detecting and Measuring Confounding - Results

		Setting 1			Setting 2			Setting 3		
N, C	Sample Size	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
10	100	0.64	0.97	0.77	0.67	0.83	0.74	0.64	0.72	0.68
10	200	0.64	1.0	0.78	0.67	0.83	0.74	0.70	0.79	0.74
10	300	0.64	1.0	0.78	0.67	0.83	0.74	0.65	0.76	0.70
10	400	0.64	1.0	0.78	0.67	0.83	0.74	0.67	0.83	0.74
10	500	0.64	1.0	0.78	0.67	0.83	0.74	0.67	0.83	0.74
15	100	0.81	0.95	0.88	0.80	0.85	0.82	0.80	0.79	0.80
15	200	0.82	1.0	0.90	0.80	0.85	0.82	0.80	0.85	0.82
15	300	0.82	1.0	0.90	0.80	0.85	0.82	0.80	0.85	0.82
15	400	0.82	1.0	0.90	0.80	0.85	0.82	0.80	0.85	0.82
15	500	0.82	1.0	0.90	0.80	0.85	0.82	0.80	0.84	0.82
20	100	0.68	0.95	0.80	0.68	0.88	0.77	0.69	0.84	0.76
20	200	0.69	1.0	0.82	0.68	0.88	0.77	0.68	0.87	0.76
20	300	0.69	1.0	0.82	0.68	0.88	0.77	0.67	0.86	0.75
20	400	0.69	1.0	0.82	0.68	0.88	0.77	0.68	0.87	0.76
20	500	0.69	1.0	0.82	0.68	0.88	0.77	0.68	0.87	0.76
25	100	0.83	0.96	0.89	0.83	0.91	0.87	0.83	0.89	0.86
25	200	0.83	1.0	0.91	0.83	0.91	0.87	0.82	0.90	0.86
25	300	0.83	1.0	0.91	0.83	0.91	0.87	0.83	0.91	0.87
25	400	0.83	1.0	0.91	0.83	0.92	0.87	0.83	0.91	0.87
25	500	0.83	1.0	0.91	0.83	0.91	0.87	0.83	0.91	0.87

Table 2: Results on synthetic datasets for settings 1,2,3.