Monte Carlo Tree Search based Space Transfer for Black-box Optimization

Shukuan Wang^{1,2}*, Ke Xue^{1,2}*, Lei Song^{1,2}, Xiaobin Huang^{1,2}, Chao Qian^{1,2†}
¹National Key Laboratory for Novel Software Technology, Nanjing University
²School of Artificial Intelligence, Nanjing University
{wangsk, xuek, huangxb, songl, qianc}@lamda.nju.edu.cn

Black-box optimization

• The objective function lacks a mathematical analytical form, can only be evaluated by inputs

 $argmax_{x\in X}f(x)$

Expensive black-optimization problems

- Problem evaluations comes with high computational or economic costs.
- Only a limited number of evaluations available

Assumption: Similar tasks share similar characteristics

• Thus, learning from similar source tasks can accelerate the optimization of target tasks.

Assumption: Similar tasks share similar characteristics

• Thus, learning from similar source tasks can accelerate the optimization of target tasks.

What is being transferred in Transfer optimization?

- Search space: extract promising subspaces
- Initialization: better initializations for warm-start
- Surrogate model: multi-task GP, deep kernel learning
- Acquisition function: balance between source and target task

Assumption: Similar tasks share similar characteristics

• Thus, learning from similar source tasks can accelerate the optimization of target tasks.

What is being transferred in Transfer optimization?

- Search space: extract promising subspaces
- Initialization: better initializations for warm-start
- Surrogate model: multi-task GP, deep kernel learning
- Acquisition function: balance between source and target task

common component can be applied to different optimizers

Motivation

Transfer optimization on search space

- Space pruning [Wistuba et al., PKDD'15]
- Hypercube/ellipsoid space extraction [Perrone et al., NeurIPS'19]
- High-quality subspace integration [Li et al. KDD'22]

More applicable when source tasks are similar to target tasks;

Motivation

Transfer optimization on search space

- Space pruning [Wistuba et al., PKDD'15]
- Hypercube/ellipsoid space extraction [Perrone et al., NeurIPS'19]
- High-quality subspace integration [Li et al. KDD'22]

More applicable when source tasks are similar to target tasks;

However, it's difficult to identify task similarities in advance in BBO

Key questions:

How to automatically identify the most relevant source tasks and leverage their information for search space transfer?

Main Idea: leverage MCTS to divide search spaces considering the source task

Modeling Assumption: the division of the search space corresponds to the splitting of tree nodes (A=B+C)

Tree Building Rule: for any node, the potential value of the left child node is higher than that of the right child node (B>C)

MCTS-transfer

Pre-learning stage: divide the search space based on source task data

- Start from the root node, for node m, if it can be split:
 - Use K-Means to divide the samples in node into two clusters
 - Use a binary classifier to separate the two clusters and divide the space
 - Calculate node potential
 - The cluster with higher potential be the left child node

$$p_m = \frac{\sum_{i \le K} \sum_{(\boldsymbol{x}_{i,j}, y_{i,j}) \in D_i \cap \Omega_m} y_{i,j}}{\sum_{i \le K} |D_i \cap \Omega_m|}.$$

MCTS-transfer

Optimization stage

• Node Selection: select the node *m* with higher UCB from ROOT

$$ext{ucb}_{m} = rac{p_{m}}{n_{m}} + 2C_{p}\sqrt{2\log(n_{p})/n_{m}} \qquad p_{m} = \gamma^{t-1} rac{\sum_{i \leq K} w_{i} \overline{y}_{i,m}}{\sum_{i < K} w_{i}} + \overline{y}_{T,m}$$

• **Simulation**: sample in the node *m*, select the query point *x* by acquisition function and evaluate *x*

MCTS-transfer

Optimization stage

- Node Expansion: expand all splitable nodes
- Backward Update and Tree Reconstruction:
 - Update similarity, ranking, and task weights w_i based on the evaluation
 - Update node potential based on w_i
 - check for any subtrees that violate the tree-building rules; if found, reconstruct the subtree.

Comparasion Experiments

validity: superiority especially in mixed and dissimilar setting

reasonableness: weights of similar tasks are higher

robustness: stable performance in complex or high–dimensional problems

Runtime Analysis

Computational cost:

the additional computation overhead is minor

Reconstruction frequency:

average frequency is low

Advantages

- Automatically identify similar source tasks and assign greater weight to fully utilize source task, accelerating the optimization process
- Dynamically adjust tree structure to increase the probability of the optimal solution locating in the best leaf node
- MCTS-transfer has surpassed the baselines in numerous experiments with introducing minor computational overhead

Future Work

- Extend MCTS-transfer to heterogeneous search space transfer
- Explore more node potential measurement methods
- Build theoretical guarantees

Thank you!