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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
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ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
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1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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MPI for Informatics

Saarland Informatics Campus
mboehle@mpi-inf.mpg.de

Mario Fritz
CISPA Helmholtz Center
for Information Security
fritz@cispa.saarland

Bernt Schiele
MPI for Informatics

Saarland Informatics Campus
schiele@mpi-inf.mpg.de

Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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MPI for Informatics

Saarland Informatics Campus
mboehle@mpi-inf.mpg.de

Mario Fritz
CISPA Helmholtz Center
for Information Security
fritz@cispa.saarland

Bernt Schiele
MPI for Informatics

Saarland Informatics Campus
schiele@mpi-inf.mpg.de

Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
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Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
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ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.
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1

Goldfinch!
I sa

y

because of

InputConvolutional Dynamic Alignment Networks for Interpretable Classifications

Moritz Böhle
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networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Localization of explanations on par with B-cos, outperforms conventional attribution methods

B-cosification generalizes to a variety of architectures and models
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• B-cosification provides the interpretability benefits of B-cos models at a much lower cost 

• Better to B-cosify existing models instead of training B-cos models from scratch 

• Shows promise as a means to obtain inherently interpretable foundation models

Takeaways

CodePaper
https://arxiv.org/abs/2411.00715 https://github.com/shrebox/B-cosification
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