

MAX PLANCK INSTITUTE FOR INFORMATICS

B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable

Shreyash Arya*

Sukrut Rao*

Max Planck Institute for Informatics, Saarland Informatics Campus

Moritz Böhle*

Bernt Schiele

Post-hoc Explanations for Understanding Deep Networks

Post-hoc Explanations for Understanding Deep Networks

- Can be directly applied to existing models
- May not be model-faithful¹
- Often not human interpretable

¹Sanity Checks for Saliency Maps [Adebayo et al., NeurIPS 2018]

B-cos Networks²: Inherently Interpretable Explanations

²B-cos Networks [Böhle et al., CVPR 2022]

B-cos Networks²: Inherently Interpretable Explanations

- Human Interpretable
- Model-faithful by design
- Need to train models from scratch to obtain

²B-cos Networks [Böhle et al., CVPR 2022]

Our work: B-cosification

Our work: B-cosification

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

Similar performance at significantly lower cost

DenseNet-121 [Huang et al., CVPR 2017]

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

Similar performance at significantly lower cost

DenseNet-121 [Huang et al., CVPR 2017], ViT [Dosovitskiy et al., ICLR 2021]

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

Interpretability on par with B-cos

B-cos

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

Interpretability on par with B-cos

B-cos

B-cosified (Ours)

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

Interpretability on par with B-cos

B-cos

B-cosified (Ours)

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

B-cosification of a foundation model: CLIP³

³CLIP [Radford et al., ICML 2021]

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

B-cosification of a foundation model: CLIP³

Input Image

"Human"

³CLIP [Radford et al., ICML 2021]

"Flowers"

- Requires significantly fewer training steps than full retraining
- Maintains accuracy
- Provides model-faithful, human interpretable explanations
- Can be used for foundation models where training from scratch is costly

Conventional	B-cos
3-channel Inputs	6-channel Inputs
Normalized Inputs	Unormalized Inputs
No Unit Normalized Weights	Unit Normalized Weights
Activation function between layers	No Activation function between layers
B=1 (linear transforms)	B=2 (non-linear transforms)
Biases in layers	No biases in layers

We perform a study on:

- which modifications are necessary
- how to best apply the modifications

B-cosified

?

Conventional	B-cos			
3-channel Inputs	6-channel Inputs			
Normalized Inputs	Unormalized Inputs			
No Unit Normalized Weights	Unit Normalized Weights			
Activation function between layers	No Activation function between layers			
B=1 (linear transforms)	B=2 (non-linear transforms)			
Biases in layers	No biases in layers			

Conventional	B-cos			
3-channel Inputs	6-channel Inputs			
Normalized Inputs	Unormalized Inputs			
No Unit Normalized Weights	Unit Normalized Weights			
Activation function between layers	No Activation function between layers			
B=1 (linear transforms)	B=2 (non-linear transforms)			
Biases in layers	No biases in layers			

B-cosified

6-channel Inputs

Conventional	B-cos			
3-channel Inputs	6-channel Inputs			
Normalized Inputs	Unormalized Inputs			
No Unit Normalized Weights	Unit Normalized Weights			
Activation function between layers	No Activation function between layers			
B=1 (linear transforms)	B=2 (non-linear transforms)			
Biases in layers	No biases in layers			

Preserves functional equivalence

B-cosified

6-channel Inputs

Normalized Inputs

No Unit Normalized Weights

Activation function between layers

J	

Conventional	B-cos
3-channel Inputs	6-channel Inputs
Normalized Inputs	Unormalized Inputs
No Unit Normalized Weights	Unit Normalized Weights
Activation function between layers	No Activation function between layers
B=1 (linear transforms)	B=2 (non-linear transforms)
Biases in layers	No biases in layers

Preserves functional equivalence

B-cosified

6-channel Inputs

Normalized Inputs

No Unit Normalized Weights

Activation function between layers

J	

Conventional	B-cos
3-channel Inputs	6-channel Inputs
Normalized Inputs	Unormalized Inputs
No Unit Normalized Weights	Unit Normalized Weights
Activation function between layers	No Activation function between layers
B=1 (linear transforms)	B=2 (non-linear transforms)
Biases in layers	No biases in layers

Preserves functional equivalence

Loses functional equivalence (2) \Rightarrow Fine-tune

B-cosified

6-channel Inputs

Normalized Inputs

No Unit Normalized Weights

Activation function between layers

B=2 (non-linear

transforms)

No biases in layers

I	
_	
)	

B-cosification generalizes to a variety of architectures and models

Accuracy reached at a much lower training cost

	Top-1 Accuracy (%)				Efficiency Gains	
Model	pretrained	B-cos [10]	B -cosified	$\Delta_{ m acc}$	t	speedup
ResNet-18	69.8	68.7	71.5	+2.8	29	×3.1
ResNet-50-v1	76.1	75.9	76.5	+0.6	46	$\times 2.0$
ResNet-50-v2	80.9	75.9	77.3	+1.4	10	×9.0
DenseNet-121	74.4	73.6	76.3	+2.7	18	×5.0
ViT-Ti	70.3	60.0	69.3	+9.3	10	$\times 9.0$
ViT-S	74.4	69.2	75.2	+6.0	10	$\times 9.0$
ViT-B	75.3	74.4	75.3	+0.9	57	imes 1.6
ViT-L	75.8	75.1	75.5	+0.4	66	$\times 1.4$
ViT _c -Ti	72.6	67.3	72.3	+5.0	10	$\times 9.0$
ViT_c -S	75.7	74.5	76.0	+1.5	32	imes 2.8
ViT_c -B	76.8	77.1	76.7	-0.4	-	-
ViT_c -L	77.9	77.8	77.1	-0.7	-	-

ImageNet CNNs and ViTs

B-cosification generalizes to a variety of architectures and models

Accuracy reached at a much lower training cost

	Top-1 Accuracy (%)				Efficiency Gains	
Model	pretrained	B-cos [10]	B -cosified	$\Delta_{ m acc}$	t	speedup
ResNet-18	69.8	68.7	71.5	+2.8	29	×3.1
ResNet-50-v1	76.1	75.9	76.5	+0.6	46	$\times 2.0$
ResNet-50-v2	80.9	75.9	77.3	+1.4	10	×9.0
DenseNet-121	74.4	73.6	76.3	+2.7	18	×5.0
ViT-Ti	70.3	60.0	69.3	+9.3	10	$\times 9.0$
ViT-S	74.4	69.2	75.2	+6.0	10	$\times 9.0$
ViT-B	75.3	74.4	75.3	+0.9	57	imes 1.6
ViT-L	75.8	75.1	75.5	+0.4	66	$\times 1.4$
ViT _c -Ti	72.6	67.3	72.3	+5.0	10	$\times 9.0$
ViT_c -S	75.7	74.5	76.0	+1.5	32	imes 2.8
ViT_c -B	76.8	77.1	76.7	-0.4	-	-
ViT_c -L	77.9	77.8	77.1	-0.7	-	-

ImageNet CNNs and ViTs

CLIP

B-cosification generalizes to a variety of architectures and models

Localization of explanations on par with B-cos, outperforms conventional attribution methods

CLIP

"A photo of a {}"

Image

CLIP

B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable

ImageNet CNNs and ViTs

Takeaways

- Better to B-cosify existing models instead of training B-cos models from scratch
- Shows promise as a means to obtain inherently interpretable foundation models

Poster Session 3, December 12, 2024, 11:00 AM

Paper

https://arxiv.org/abs/2411.00715

B-cosification provides the interpretability benefits of B-cos models at a much lower cost

Code

https://github.com/shrebox/B-cosification

